Skip to main content
Log in

A facile synthesis of g-C3N4/BaTiO3 photocatalyst with enhanced activity for degradation of methylene blue under visible light

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

g-C3N4/BaTiO3 composite was hydrothermally synthesized at 200°C for 24 h from a dispersed mixture of g-C3N4 and BaTiO3 in water, in which BaTiO3 was hydrothermally synthesized at 200°C for 48 h using barium nitrate, isopropanol, titanium tetrachloride and sodium hydroxide as precursors without assistance of any surfactant; and graphitic carbon nitride (g-C3N4) was prepared by pyrolysis of melamine at 520°C. The obtained materials were characterized by X-ray diffraction, infrared spectra, scanning electron microscopy, elemental mapping, X-ray photoelectron spectroscopy and ultraviolet–visible diffuse reflectance spectroscopy. The photocatalytic activity of the materials was assessed by degradation of methylene blue (MB) under visible light. The enhancement of photocatalytic activity of the g-C3N4/BaTiO3 composite compared to the single components, g-C3N4 and BaTiO3 was observed, which is attributed to the reduction of combination rate of photogenerated electron–hole pairs in the composite. The MB degradation over the composite was mainly attributed to the photoreduction process induced by the superoxide radical anions (O2) and hydroxyl radicals (OH); and a mechanism was also proposed based on the heterojunction model from the two semiconductor components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Chan S H S, Wu T Y, Juan J C and Teh C Y 2011 J. Chem. Technol. Biotechnol., https://doi.org/10.1002/jctb.2636

  2. Rauf M A and Ashraf S S 2009 J. Hazard. Mater., https://doi.org/10.1016/j.jhazmat.2008.11.043

  3. Lee W W, Chung W H, Huang W S, Lin W C, Lin W Y, Jiang Y R et al 2013 J. Taiwan Inst. Chem. Eng., https://doi.org/10.1016/j.jtice.2013.01.005

  4. Robinson T, McMullan G, Marchant R and Nigam P 2001 Biores. Technol., https://doi.org/10.1016/S0960-8524(00)00080-8

    Article  Google Scholar 

  5. Bora L V and Mewada R K 2017 Renew. Sust. Energ. Rev., https://doi.org/10.1016/j.rser.2017.01.130

  6. Byrne C, Subramanian G and Pillai S C 2018 J. Environ. Chem. Eng., https://doi.org/10.1016/j.jece.2017.07.080

    Article  Google Scholar 

  7. Gupta S M and Tripathi M 2011 Chin. Sci. Bull., https://doi.org/10.1007/s11434-011-4476-1

  8. Lee K M, Lai C W, Ngai K S and Juan J C 2016 Water Res., https://doi.org/10.1016/j.watres.2015.09.045

    Article  Google Scholar 

  9. Dong P, Hou G, Xi X, Shao R and Dong F 2017 Environ. Sci. Nano, https://doi.org/10.1039/C6EN00478D

  10. Peña M A and Fierro J L G 2001 Chem. Rev., https://doi.org/10.1021/cr980129f

  11. Yan Y, Yang H, Yi Z, Li R and Wang X 2019 Micromachines, https://doi.org/10.3390/mi10040254

    Article  Google Scholar 

  12. Ha M N, Zhu F, Liu Z, Wang L, Liu L, Lu G et al 2016 RSC Adv., https://doi.org/10.1039/C6RA03472A

    Article  Google Scholar 

  13. Devi L G and Nithya P M 2018 Inorg. Chem. Front., https://doi.org/10.1039/C7QI00590C

  14. Nageri M, Shalet A B and Kumar V 2017 J. Mater. Sci.: Mater. Electron., https://doi.org/10.1007/s10854-017-6729-5

  15. Yongfei Cui, Joe Brisco, Yaqiong Wang, Nadezda V Tarakina and Steve Dunn 2017 ACS Appl. Mater. Interfaces, https://doi.org/10.1021/acsami.7b03523

  16. Xian T, Yang H, Di L J and Dai J F 2015 J. Alloys Compd., https://doi.org/10.1016/j.jallcom.2014.11.051

    Article  Google Scholar 

  17. Yang B, Wu C, Wang J, Bian J, Wang L, Liu M et al 2020 Ceram. Int., https://doi.org/10.1016/j.ceramint.2019.10.145

  18. Wu M, Ding T, Wang Y, Zhao W, Xian H, Tian Y et al 2019 Catal. Today, https://doi.org/10.1016/j.cattod.2019.04.061

  19. Kroke E and Schwarz M 2004 Coord. Chem. Rev., https://doi.org/10.1016/j.ccr.2004.02.001

  20. Goglio G, Foy D and Demazeau G 2008 Mater. Sci. Eng.: R: Rep., https://doi.org/10.1016/j.mser.2007.10.001

  21. Chen X, Zhang J, Fu X, Antonietti M and Wang X 2009 J. Am. Chem. Soc., https://doi.org/10.1021/ja903923s

    Article  Google Scholar 

  22. Marth S, Nashim A and Parid K M 2013 J. Mater. Chem. A, https://doi.org/10.1039/C3TA10851A

    Article  Google Scholar 

  23. Yongfei C, Joe B and Steve D 2013 Chem. Mater., https://doi.org/10.1021/cm402092f

    Article  Google Scholar 

  24. Li J, Inukai K, Tsuruta A, Takahashi Y and Shin W 2017 J. Asian Ceram. Soc., https://doi.org/10.1016/j.jascer.2017.09.006

  25. Scherrer P and Göttinger N 1918 Math. Phys. 2 98

    Google Scholar 

  26. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M et al 2009 Nat. Mater., https://doi.org/10.1038/nmat2317

    Article  Google Scholar 

  27. Yan S C, Li Z S and Zou Z G 2009 Langmuir, https://doi.org/10.1021/la900923z

  28. Ni Y, Zheng H, Xiang N, Yuan K and Hong J 2015 RSC Adv., https://doi.org/10.1039/C4RA13642J

    Article  Google Scholar 

  29. Kappadan S, Gebreab T W, Thomas S and Kalarikkal N 2016 Mater. Sci. Semicond. Process., https://doi.org/10.1016/j.mssp.2016.04.019

  30. Wang P, Fan C, Wang Y, Ding G and Yuan P 2013 Mater. Res. Bull., https://doi.org/10.1016/j.materresbull.2012.11.075

  31. Ji C, Yin S N, Sun S and Yang S 2018 Appl. Surf. Sci., https://doi.org/10.1016/j.apsusc.2017.11.233

  32. Li J, Liu E, Ma Y, Hu X, Wan J, Sun L et al 2016 Appl. Surf. Sci., https://doi.org/10.1016/j.apsusc.2015.12.236

  33. Liu E, Chen J, Ma Y, Feng J, Jia J, Fan J et al 2018 J. Colloid Interface Sci., https://doi.org/10.1016/j.jcis.2018.04.038

  34. Nayak S, Sahoo B, Chaki T K and Khastgir D 2014 RSC Adv., https://doi.org/10.1039/C3RA44815K

    Article  Google Scholar 

  35. Rauf A, Shah M A S, Lee J Y, Chung C H, Bae J W and Yoo P J 2017 RSC Adv., https://doi.org/10.1039/C7RA03854B

    Article  Google Scholar 

  36. Xiao X, Hu R, Liu C, Xing C, Qian C, Zuo X et al 2013 Appl. Catal. B: Environ., https://doi.org/10.1016/j.apcatb.2013.04.037

  37. Shi L, Liang L, Ma J, Wang F and Sun J 2014 Dalton Trans., https://doi.org/10.1039/C4DT00087K

    Article  Google Scholar 

  38. Lim J, Kim H, Alvarez P J J, Lee J and Choi W 2016 Environ. Sci. Technol., https://doi.org/10.1021/acs.est.6b03250

  39. Shi L, Liang L, Ma J, Wang F and Sun J 2014 Catal. Sci. Technol., https://doi.org/10.1039/C3CY00871A

  40. Ghugal S G, Umare S S and Sasikala R 2015 RSC Adv., https://doi.org/10.1039/C5RA09974A

    Article  Google Scholar 

  41. Elham B A, Alireza B and Moayad H S 2018 J. Phys. Chem. Solids, https://doi.org/10.1016/j.jpcs.2018.06.024

    Article  Google Scholar 

  42. Faisal M, Farid A H, Mohammed J, Alsaiari M A, Al-Sayari S A and Al-Assiri M S 2020 Mater. Today Commun., https://doi.org/10.1016/j.mtcomm.2020.101048

    Article  Google Scholar 

  43. Morteza G, Moones H and Saeed G 2020 Spectrochim. Acta Part A: Molec. Biomolec. Spectrosc., https://doi.org/10.1016/j.saa.2019.117961

    Book  Google Scholar 

  44. Panagiotis S K, Ioannis K, Dimitrios P and Triantafyllos A 2018 Catalysts, https://doi.org/10.3390/catal8110554

    Article  Google Scholar 

  45. Thanh T P and Eun W S 2020 Appl. Surf. Sci., https://doi.org/10.1016/j.apsusc.2019.143992

  46. Mohamed R M and Harraz F A 2020 Mater. Res. Bull., https://doi.org/10.1016/j.materresbull.2020.110965

Download references

Acknowledgement

This work was financially supported by the Vietnam Ministry of Education and Training (Grant No. B2019-DQN-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vien Vo.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.K., Nguyen Thi, V.N., Tran, H.H. et al. A facile synthesis of g-C3N4/BaTiO3 photocatalyst with enhanced activity for degradation of methylene blue under visible light. Bull Mater Sci 44, 28 (2021). https://doi.org/10.1007/s12034-020-02277-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02277-2

Keywords

Navigation