Skip to main content
Log in

Amperometric assay of hydrazine utilizing electro-deposited cobalt hexacyanoferrate nanocrystals on graphene oxide sheets

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In-situ electrochemical deposition of cobalt hexacyanoferrate (CoHCF) on graphene oxide (GO) and its application for the electrocatalytic hydrazine determination in real samples are described in this research study. Co2+ is immobilized on GO and the resulting material, GO-Co2+ is coated on the surface of glassy carbon (GC) electrode. The fabricated electrode (GC/GO-Co2+) is subjected to a continuous potential cycling in the range of 0.0–1.0 V which results in the formation of a thin CoHCF film on the surface of GO coated on the GC electrode (abbreviated as GC/GO-CoHCF). The synthesized GO-CoHCF composite material is characterized by Fourier transform infrared and scanning electron microscopy. GC/GO-CoHCF electrode electrocatalytically oxidizes hydrazine at low overpotential (0.63 V) and this phenomenon is subsequently utilized for the sensitive determination of hydrazine in aqueous solutions. It exhibits a wide linear calibration range (0.1–400 µM), high sensitivity (0.93 µA µM−1 cm−2) and low limit of detection (17.5 nM) for the determination of hydrazine. Further, this electrode is employed for hydrazine determination in real samples.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Georgakilas V, Otyepka M, Bourlinos A B, Chandra V, Kim N, Kemp K C et al 2012 Chem. Rev. 112 6156

    Article  CAS  Google Scholar 

  2. Jahan M, Bao Q and Loh K P 2012 J. Am. Chem. Soc. 134 6707

    Article  CAS  Google Scholar 

  3. Zhang H, Li Z-F, Snyder A, Xie J and Stanciu L A 2014 Anal. Chim. Acta 827 86

    Article  CAS  Google Scholar 

  4. Dreyer D R, Park S, Bielawski C W and Ruoff R S 2010 Chem. Soc. Rev. 39 228

    Article  CAS  Google Scholar 

  5. Kuila T, Bose S, Mishra A K, Khanra P, Kim N H and Lee J H 2012 Prog. Mater. Sci. 57 1061

    Article  CAS  Google Scholar 

  6. Shi J, Zhang H, Snyder A, Wang M-X, Xie J, Porterfield D M et al 2012 Biosens. Bioelectron. 38 314

    Article  CAS  Google Scholar 

  7. Marcano D C, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z, Slesarev A et al 2010 ACS Nano 4 4806

    Article  CAS  Google Scholar 

  8. Castro S S L, Mortimer R J, de Oliveira M F and Stradiotto N R 2008 Sensors 8 1950

    Article  CAS  Google Scholar 

  9. Li X, Chen Z, Zhong Y, Yang F, Pan J and Liang Y 2012 Anal. Chim. Acta 710 118

    Article  CAS  Google Scholar 

  10. Florescu M, Barsan M, Pauliukaite R and Brett C M A 2007 Electroanalysis 19 220

    Article  CAS  Google Scholar 

  11. Yang M, Jiang J, Yang Y, Chen X, Shen G and Yu R 2006 Biosens. Bioelectron. 21 1791

    Article  CAS  Google Scholar 

  12. Kang I, Shin W-S, Manivannan S, Seo Y and Kim K 2016 J. Electrochem. Sci. Technol. 7 277

    Article  CAS  Google Scholar 

  13. Gerber S J and Erasmus E 2018 Transit. Met. Chem. 43 409

    Article  CAS  Google Scholar 

  14. Talukder P, Shit S, Noth H, Westerhausen M, Kneifel A N and Mitra S 2012 Transit. Met. Chem. 37 71

    Article  CAS  Google Scholar 

  15. Sandu I, Vlaicu I, Cristian A and Mihailciuc C 2008 An. Univ. Bucuresti 2 25

    Google Scholar 

  16. Wang C, Zhang L, Guo Z, Xu J, Wang H, Zhai K et al 2010 Microchim. Acta 169 1

    Article  CAS  Google Scholar 

  17. Shankaran D R and Narayanan S S 2001 Russ. J. Electrochem. 37 1149

    Article  CAS  Google Scholar 

  18. Li J, Xie H and Chen L 2011 Sens. Actuators B 153 239

    Article  CAS  Google Scholar 

  19. Qu F, Yang M, Lu Y, Shen G and Yu R 2006 Anal. Bioanal. Chem. 386 228

    Article  CAS  Google Scholar 

  20. Wu X, Wang B, Li S, Liu J and Yu M 2015 RSC Adv. 5 33438

    Article  CAS  Google Scholar 

  21. Huang Z, Xi L, Subhani Q, Yan W, Guo W and Zhu Y 2013 Carbon 62 127

  22. Cumba L R, de Bicalho U O and do Carmo D R 2012 Int. J. Electrochem. Sci. 7 2123

  23. Berrettoni M, Giorgetti M, Zamponi S, Conti P, Ranganathan D, Zanotto A et al 2010 J. Phys. Chem. C 114 6401

    Article  CAS  Google Scholar 

  24. Shi Y, Zhou B, Wu P, Wang K and Cai C 2007 J. Electroanal. Chem. 611 1

    Article  CAS  Google Scholar 

  25. Kaniyoor A and Ramaprabhu S 2012 J. Mater. Chem. 22 8377

    Article  CAS  Google Scholar 

  26. Gupta R, Rastogi P K, Ganesan V, Yadav D K and Sonkar P K 2017 Sens. Actuators B 239 970

    Article  CAS  Google Scholar 

  27. Gupta R, Rastogi P K, Srivastava U, Ganesan V, Sonkar P K and Yadav D K 2016 RSC Adv. 6 65779

    Article  CAS  Google Scholar 

  28. Guo C X, Lei Y and Li C M 2011 Electroanalysis 23 885

    Article  CAS  Google Scholar 

  29. Moon I K, Lee J, Ruoff R S and Lee H 2010 Nat. Commun. 1 73

  30. Deng K, Li C, Qiu X, Zhou J and Hou Z 2015 Electrochim. Acta 174 1096

    Article  CAS  Google Scholar 

  31. Maleki N, Safavi A, Farjami E and Tajabadi F 2008 Anal. Chim. Acta 611 151

    Article  CAS  Google Scholar 

  32. Yang H, Lu B, Guo L and Qi B 2011 J. Electroanal. Chem. 650 171

    Article  CAS  Google Scholar 

  33. Zare H R, Nasirizadeh N, Chatraei F and Makarem S 2009 Electrochim. Acta 54 2828

    Article  CAS  Google Scholar 

  34. Ramaraj S, Sakthivel R, Chen S-M, Palanisamy S, Velusamy V, Chen T-W et al 2017 Int. J. Electrochem. Sci. 12 5567

    Article  CAS  Google Scholar 

  35. Hosseini H, Ahmar H, Dehghani A, Bagheri A, Fakhari A R and Amini M M 2013 Electrochim. Acta 88 301

    Article  CAS  Google Scholar 

  36. Liu Y, Li Y and He X 2014 Anal. Chim. Acta 819 26

    Article  CAS  Google Scholar 

  37. Karimi-Maleh H, Moazampour M, Ensafi A A, Mallakpour S and Hatami M 2014 Environ. Sci. Pollut. Res. 21 5879

    Article  CAS  Google Scholar 

  38. Zhu J, Chauhan D S, Shan D, Wu X-Y, Zhang G-Y and Zhang X-J 2014 Microchim. Acta 181 813

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DST-ASEAN (IMRC/AISTDF/R&D/P-16/2018) programme is acknowledged for financial support. MY is thankful to CSIR, New Delhi for the senior research fellowship (09/013(0855)/2018-EMR-I). We thank Ms Mamta Patel for her assistance during the initial stage of this study in the electro-deposition and characterization of GO-CoHCF films and preliminary assessment of hydrazine determination. We are thankful to Prof O N Srivastava, Department of Physics, Banaras Hindu University for SEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vellaichamy Ganesan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 577 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, M., Ganesan, V., Gupta, R. et al. Amperometric assay of hydrazine utilizing electro-deposited cobalt hexacyanoferrate nanocrystals on graphene oxide sheets. Bull Mater Sci 43, 245 (2020). https://doi.org/10.1007/s12034-020-02219-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02219-y

Keywords

Navigation