Skip to main content
Log in

Villari effect in silicone/FeGa composites

  • Original Research
  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This paper presents the results of the Villari effect study in FeGa magnetorheological composites with very low stresses. The composites consist of a silicone matrix and Fe75Ga25 powder of size ranging from 50 to 100 \(\upmu \hbox {m}\). Two types of composites, one is with 45 wt% and the other one with 30 wt% of Fe75Ga25 powder have been manufactured. The Villari effect has been measured in both samples as-manufactured and in those in which a 1 T magnetic field has been applied after curing. The results indicate that the composites with an applied field of 1 T after curing show the greatest Villari signal even without any applied magnetic field. This fact allows a design of a low-cost force sensor and high performance. A simple model, based on the change in the cross-section of the composite, has been developed to explain the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rabinow J 1948 Natl. Bureau Stand. Tech. News Bull. 32 54

    Google Scholar 

  2. Jolly M R, Carlson J D and Muñoz B C 1996 Smart Mater. Struct. 5 607

    Article  CAS  Google Scholar 

  3. Jolly M R, Carlson J D, Muñoz B C and Bullions T A 1996 J. Intell. Mater. Syst. Struct. 7 613

    Article  CAS  Google Scholar 

  4. Nguyen V Q, Ahmed A S and Ramanujan R V 2012 Adv. Mater. 24 4041

    Article  CAS  Google Scholar 

  5. Zhao X, Kim J, Cezar Ch A, Huebsch N, Lee K, Bouhadir K et al 2011 Proc. Natl. Acad. Sci. USA 108 67

    Article  CAS  Google Scholar 

  6. Zhou X and Amirouche F 2011 Micromachines (Basel) 2 345

    Article  Google Scholar 

  7. Pirmoradi F N, Jackson J K, Burt H M and Chiao M 2011 Lab. Chip 11 3072

    Article  CAS  Google Scholar 

  8. Li W, Zhang X and Du H 2012 J. Intell. Mater. Syst. Struct. 23 1041

    Article  Google Scholar 

  9. Eem S H, Jung H J and Koo J H 2011 IEEE Trans. Magn. 47 2901

    Article  Google Scholar 

  10. Li Y, Li J, Li W and Du H 2014 Smart. Mater. Struct. 23 123001

    Article  Google Scholar 

  11. Ubaidillah, Sutrisno J, Purwanto A and Mazlan S 2015 Adv. Eng. Mater. 17 563

    Article  CAS  Google Scholar 

  12. Abramchuk S, Kramarenko E, Stepanov G, Nikitin L V, Filipcsei G, Khokhlov A R et al 2007 Polym. Adv. Technol. 18 883

    Article  CAS  Google Scholar 

  13. Ubaidillah, Imaddudin F, Li Y, Mazlan S A, Sutrisno J, Koga T et al 2016 Smart. Mater. Struct. 25 115002

    Article  Google Scholar 

  14. Guskos N, Typek J, Padyak B V, Gorelenko Y K, Pelech I, Narkiewicz U et al 2010 J. Non-Cryst. Solids 356 1893

    Article  CAS  Google Scholar 

  15. Siegried P, Koo J-H and Pechan M 2014 Polym. Test. 37 6

    Article  Google Scholar 

  16. Makarova L A, Alekhina Y A, Rusakova T S and Perov N S 2016 Phys. Procedia. 82 38

    Article  CAS  Google Scholar 

  17. Guan X, Dong X and Ou J 2008 J. Magn. Magn. Mater. 320 158

    Article  CAS  Google Scholar 

  18. Kiseleva T Y, Zholudev S I, Il’inykh I A and Novakova A A 2013 Tech. Phys. Lett. 39 1109

    Article  CAS  Google Scholar 

  19. Ginder J M, Clark S M, Schlotter W F and Nichols M E 2002 Int. J. Mod. Phys. B 16 2412

    Article  CAS  Google Scholar 

  20. Riesgo G, Carrizo J, Elbaile L, Crespo R D, Sepúlveda R and García J A 2017 Mater. Sci. Eng. B 215 56

    Article  CAS  Google Scholar 

  21. Zhao R, Wang B, Cao S, Huang W, Lu Q and Yan J 2018 J. Magn. 23 280

    Article  Google Scholar 

  22. Narita F and Fox M 2018 Adv. Eng. Mater. 20 1700743

    Article  Google Scholar 

  23. Yoffe A, Kaniel H and Shilo D 2017 Funct. Mater. Lett. 10 1750060

    CAS  Google Scholar 

  24. Dapino M J, Smith R C, Calkins F T and Flatau A B 2002 J. Intell. Mater. Syst. Struct. 13 737

    Article  Google Scholar 

  25. Wang H B and Feng Z H 2013 IEEE Trans. Magn. 49 1327

    Article  Google Scholar 

  26. Al-Hajjeh A, Lynch E, Law Ch T and El-Hajjar R 2016 IEEE Magn. Lett. 7 6502804

    Article  Google Scholar 

  27. Oliver W C and Pharr G M 2004 J. Mater. Res. 19 3

    Article  CAS  Google Scholar 

  28. Harding D S, Olive W C, Pharr G M, Baker S P, Børgesen P, Townsend P H et al 1995 V. MRS Sympos. Proc. 356

  29. Oliver W C and Pharr G M 1992 J. Mater. Res. 7 1564

    Article  CAS  Google Scholar 

  30. Sneddon I N 1965 Int. J. Eng. Sci. 3 47

    Article  Google Scholar 

  31. Sebald G, Nakano M, Lallart M, Tian T, Diguet G and Cavaillé J 2017 Sci. Technol. Adv. Mater. 18 766

    Article  CAS  Google Scholar 

  32. Diguet G, Sebald G, Nakano M, Lallart M and Cavillé J 2019 J. Magn. Magn. Mater. 481 39

    Article  CAS  Google Scholar 

  33. Brown W F 1949 Phys. Rev. 75 147

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Principality of Asturias governments under grant GRUPIN 14-037. We are grateful to Dr D Martínez, in charge of Magnetic Measurements and the X-ray Diffraction of the Scientific Services of the University of Oviedo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R D Crespo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riesgo, G., Elbaile, L., Carrizo, J. et al. Villari effect in silicone/FeGa composites. Bull Mater Sci 42, 238 (2019). https://doi.org/10.1007/s12034-019-1926-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1926-x

Keywords

Navigation