Skip to main content
Log in

Effect of non-\(180^{\circ }\) polarization invariants on the exchange bias of tetragonal \(\langle 001\rangle \) and rhombohedral \(\langle 111\rangle \) orientations of bismuth ferrite epitaxial thin films

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

\(\hbox {BiFeO}_{3}\) (BFO) is the only room temperature multiferroic material that has been extensively studied due to its multifunctional properties. BFO with a canted G-type antiferromagnetic (AFM) ordering exhibits strong exchange bias characteristics with NiFe which offers the potential to design and utilize devices working based on multiferroic features. In the past, it was known that the presence of \(180^{\circ }\) domain walls of BFO hinders a plausible exchange bias interaction. To understand the role of the strain-induced effects on such \(180^{\circ }\) domain walls and its effect on the exchange bias, NiFe, a soft ferromagnetic layer, was grown on the epitaxial BFO AFM layers. An approximately 80 nm BFO layer was grown epitaxially in both the tetragonal (001) phase on the \(\hbox {LaAlO}_{3}\) (001) substrate and the rhombohedral (111) phase on the \(\hbox {SrTiO}_{3}\) (111) substrate, with a thin (10 nm) layer of \(\hbox {Ni}_{80}\hbox {Fe}_{20}\) on top of it. An exchange bias of 510 Oe was observed in the tetragonal phase of BFO with a c / a ratio of 1.22, which is comparable with the exchange bias shown by the (111) oriented rhombohedral phase (360 Oe). Both the tetragonal (001) and rhombohedral (111) layers possess ferroelectric polarization normal to the sample surface and so the domain walls are mostly \(180^{\circ }\) oriented which is expected to have a minimum effect on the exchange bias. However, the weak strain-induced structural variants in the (111) oriented rhombohedral BFO and the monoclinic distortion present in the tetragonal BFO introduce non-\(180^{\circ }\) domain walls in the system. These variants arising due to the structural distortion are expected to play a key role in defining the ferroelectric domain wall nature, thereby exhibiting exchange bias characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reohr W, Honigschmid H, Robertazzi R, Gogl D, Pesavento F, Lammers S et al 2002 IEEE Circuits Devices Mag. 18 17

    Article  Google Scholar 

  2. Binek C and Doudin B 2005 J. Phys. Condens. Matter 17 39

    Article  Google Scholar 

  3. Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B et al 2003 Science 299 1719

    Article  CAS  Google Scholar 

  4. Bertinshaw J, Maran R, Callori S J, Ramesh V, Cheung J, Danilkin S A et al 2016 Nat. Commun. 7 12664

    Article  CAS  Google Scholar 

  5. Zhang J X, Xiang B, He Q, Seidel J, Zeches R J, Yu P et al 2009 Science 326 977

    Article  Google Scholar 

  6. Ramesh R and Spaldin N A 2007 Nature Mater. 6 2

    Article  Google Scholar 

  7. Sajmohan M M, Bandyopadhyay S, Jogi T, Bhattacharya S and Ramadurai R 2019 J. Appl. Phys. 125 012501

    Article  Google Scholar 

  8. Sajmohan M M, Sreenath M V and Ranjith R MRS Adv. 3 2713

  9. Sajmohan M M and Ranjith R 2018 AIP Conf. Proc. 1942 80040

    Article  Google Scholar 

  10. Choi T, Lee S, Choi Y J, Kiryukhin V and Cheong S W 2009 Science 324 63

    Article  CAS  Google Scholar 

  11. Chu S H, Singh D J, Wang J, Li E P and Ong K P 2012 Laser Photonics Rev. 6 684

    Article  CAS  Google Scholar 

  12. Nogules J and Schuller I K 1999 J. Magn. Magn. Mater. 192 203

    Article  Google Scholar 

  13. Dong S, Yamauchi K, Yunoki S, Yu R, Liang S, Moreo A et al 2009 Phys. Rev. Lett. 103 5

    Google Scholar 

  14. Bea H, Bibes M, Cherifi S, Nolting F, Warot-Fonrose B, Fusil S et al 2006 Appl. Phys. Lett. 89 242114

    Article  Google Scholar 

  15. Martin L W, Chu Y H, Zhan Q, Ramesh R, Han S J, Wang S X et al 2007 Appl. Phys. Lett. 91 1

    Google Scholar 

  16. Bea H, Bibes M, Ott F, Dupe B, Zhu X H, Petit S et al 2008 Phys. Rev. Lett. 100 1

    Article  Google Scholar 

  17. Dho J and Blamire M G 2009 J. Appl. Phys. 106 1

    Article  Google Scholar 

  18. Heron J T, Schlom D G and Ramesh R 2014 Appl. Phys. Rev. 1 21303

    Article  Google Scholar 

  19. Dho J and Blamire M G 2009 J. Appl. Phys. 106 73914

    Article  Google Scholar 

  20. Zhao T, Scholl A, Zavaliche F, Lee K, Barry M, Doran A et al 2006 Nat. Mater. 5 823

    Article  CAS  Google Scholar 

  21. Bai F, Yu G, Wang Y, Jin L, Zeng H, Tang X et al 2012 Appl. Phys. Lett. 101 092401

    Article  Google Scholar 

  22. Xu Q, Yuan X, Xue X, Shi Z, Wen Z and Du J 2014 Phys. Status Solidi B 251 892

    Article  CAS  Google Scholar 

  23. Venkataiah G, Anupama S, Katsuyoshi K, Mitsuru I and Tomoyasu T 2017 Phys. Status Solidi RRL 11 1700294

    Article  Google Scholar 

  24. Bea H, Bibes M, Barthlmy A, Bouzehouane K, Jacquet E, Khodan A et al 2005 Appl. Phys. Lett. 87 1

    Article  Google Scholar 

  25. Li J, Wang J, Wuttig M, Ramesh R, Wang N, Ruette B et al 2004 Appl. Phys. Lett. 84 5261

    Article  CAS  Google Scholar 

  26. Saito K, Ulyanenkov A, Grossmann V, Ress H, Bruegemann L, Ohta H et al 2006 Jpn. J. Appl. Phys. 45 7311

    Article  CAS  Google Scholar 

  27. Zhang N, Yokota H, Glazer A M, Ren Z, Keen D A, Keeble D S et al 2014 Nat. Commun. 5 5231

    Article  CAS  Google Scholar 

  28. Hatt A J, Spaldin N A and Ederer C 2010 Phys. Rev. B 81 54109

    Article  Google Scholar 

  29. Martin L W, Chu Y H, Holcomb M B, Huijben M, Yu P, Han S J et al 2008 Nano Lett. 8 2050

    Article  CAS  Google Scholar 

  30. Dipanjan M, Vilas S, Milko I, Stephen J, Amit K, Kalinin S V et al 2010 Nano Lett. 10 2555

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by DAE-BRNS (project no: 34/20/05/2014-BRNS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Ranjith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajmohan, M.M., Ranjith, R. & Chelvane, J.A. Effect of non-\(180^{\circ }\) polarization invariants on the exchange bias of tetragonal \(\langle 001\rangle \) and rhombohedral \(\langle 111\rangle \) orientations of bismuth ferrite epitaxial thin films. Bull Mater Sci 42, 208 (2019). https://doi.org/10.1007/s12034-019-1904-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1904-3

Keywords

Navigation