Skip to main content
Log in

Characterization of ultra-fine aluminium particles with potential applications as composite propellants

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

High performance and reactivity of ultra-fine aluminium is the present new area of interest in aerospace and defence applications. Ultra-fine aluminium is an important ingredient in propellant compositions and formulations, which significantly improves the performance parameters of rockets. This paper discusses the characterization of synthesized ultra-fine aluminium, such as active (metallic) aluminium content, bulk density, X-ray diffraction, surface area (Brunauer–Emmett–Teller), scanning electron microscopy, transmission electron microscopy, thermal analysis and X-ray photo-electron spectroscopy. It is observed that the maximum metallic aluminium content of 85.93% was obtained by a gas volumetric method. The synthesized ultra-fine aluminium particles will greatly promote the application of these particles in composite propellants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Eisenreich N, Juez-Lorenzo M, Kolarik V, Koleczko A, Weiser V and Fietzek H 2004 Propell. Explos. Pyrot. 29 137

    Article  CAS  Google Scholar 

  2. Jayaraman K, Chakravarthy S R and Sarathi R 2010 Combust. Explos. Shock Waves 46 21

    Article  Google Scholar 

  3. DeLuca L T, Colombo G, Maggi F, Bandera A, Babuk V A, Galfetti L et al 2010 J. Propul. Power 26 724

    Article  CAS  Google Scholar 

  4. Ivanov Y F, Sedoi V S, Arkhipov V A, Bondarchuk S S, Vorozhtsov A B, Korotkikhand A G et al 2003 Propell. Explos. Pyrot. 28 319

    Article  CAS  Google Scholar 

  5. Jayaraman K, Chakravarthy S R, Anand K V and Sarathi R 2009 Combust. Flame 156 1662

    Article  CAS  Google Scholar 

  6. Li F, Guo X, Liu L, Li M, Chen W, Jiang W et al 2011 Int. J. Energ. Mater. Chem. Propul. 10 67

    CAS  Google Scholar 

  7. Babuk V, Dolotkazin I, Conti A, Galfetti L, DeLuca L T, Glebov A et al 2009 Prog. Propuls. Phys. 1 3

    Article  Google Scholar 

  8. Galfetti L, Severini F, Colombo G, Meda L, DeLuca L T and Marra G 2007 Eur. Conf. Aerosp. Sci. EUCASS 11 26

    CAS  Google Scholar 

  9. Jigatch A N, Kuskov M L, Stoenko N I, Storozhev V, Leipunsky I O and Pribory B 2002 Exp. Tech. Instrum. 6 122

    Google Scholar 

  10. Ya G M and Miller A V 1981 USSR inventor’s certificate no. 814 432 Byull. Izobret no. 11

  11. Mazalov Y A, Bogdanova V V, Ivashkevich L S, Pavlovets G Y and Chinnov V V 1993 Combust. Explos. Shock Waves 29 198

    Article  Google Scholar 

  12. Khan A S, Farrokh B and Takacs L 2008 Mater. Sci. Eng. A 489 77

    Article  Google Scholar 

  13. Haber J A and Buhor W E 1998 J. Am. Chem. Soc. 120 10847

    Article  CAS  Google Scholar 

  14. Gutmanas E Y, Trusov L I and Gotman I 1994 Nanostruct. Mater. 4 893

    Article  CAS  Google Scholar 

  15. Sanchez-Lopez J C, Caballero A and Fernandez A 1998 J. Eur. Ceram. Soc. 18 1195

    Article  CAS  Google Scholar 

  16. Sun X K, Sun M, Cong H T and Yang M C 1999 Nanostruct. Matter 11 917

    Article  CAS  Google Scholar 

  17. Sedoi V S and Valveich V V 1999 J. Tech. Phys. 25 81

    Google Scholar 

  18. Girshick S L, Muno R, Wu C Y, Yang L, Singh S K, Chiu C P et al 1993 J. Aerosol. Sci. 24 367

    Article  CAS  Google Scholar 

  19. Kobayashi N, Kawakami Y, Kamada K, Li J G, Watanabe R and Ishigaki T 2008 Thin Solid Films 516 4402

    Article  CAS  Google Scholar 

  20. Mamak M, Stadler U, Dolbec R, Boulos M, Choi S Y and Petrov S 2010 J. Mater. Chem. 20 9855

    Article  CAS  Google Scholar 

  21. Jung T, Kwon H, Park S, Ho J, Jung S, Baek J et al 2015 J. Nanosci. Nanotechnol. 15 8424

    Article  CAS  Google Scholar 

  22. Ananthapadmanabhan P V, Sreekumar K P, Thiyagarajan K and Venkatramani N 2004 Scr. Mater. 50 143

    Article  CAS  Google Scholar 

  23. Ye R, Li J G and Ishigaki T 2007 Thin Solid Films 515 4251

    Article  CAS  Google Scholar 

  24. Kim K I, Kim J H, Cho W S, Hwang K T, Choi S C and Han K S 2014 Ceram. Int. 40 8117

  25. Dreizin E L 2009 Prog. Energy Combust. Sci. 35 141

    Article  CAS  Google Scholar 

  26. Maggi F, Paravan C, DeLuca L T, Dossi S and Liljedahl M 2015 Powder Technol. 270 46

    Article  CAS  Google Scholar 

  27. Chen L, Song W, Lv J, Chen X and Xie C 2010 Mater. Chem. Phys. 120 670

    Article  CAS  Google Scholar 

  28. Gromov A A, Strokova Y I and Ditts A A 2010 Russian J. Phys. Chem. 4 156

    Article  Google Scholar 

  29. Wang F, Wu Z, Shangguan X, Sun Y, Feng J, Li Z et al 2017 Sci. Rep. 7 5228

    Article  Google Scholar 

  30. Wang S 2005 Propell. Explos. Pyrot. 30 148

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank Director ASL, for facilitating this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Tejasvi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tejasvi, K., Venkateswara Rao, V. & Pydi Setty, Y. Characterization of ultra-fine aluminium particles with potential applications as composite propellants. Bull Mater Sci 42, 207 (2019). https://doi.org/10.1007/s12034-019-1895-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1895-0

Keywords

Navigation