Skip to main content

Advertisement

Log in

A conductive mechanism of PVA (Mowiol 10-98) filled with ZnO and MWCNT nanoparticles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Polyvinyl alcohol (PVA) hybrid nanocomposites are prepared via an ex situ approach with ZnO and MWCNT nanoparticle fillers and their conductive mechanisms have been investigated. The tailored hybrid nanocomposite conformation and their microstructural disparities for different filler concentrations were studied using an X-ray diffractometer. The direct current (DC) conductivity studies show an increase in the conductivity from \(1.0528\times 10^{-11}\) to \(2.1514\times 10^{-8}\hbox { S cm}^{-1}\) up to a percolation threshold filler concentration of \(x=7.5\) wt%. The dielectric constant substantially indicates a decreasing trend with increasing frequency. The exaggerated dielectric constant values of 11.8 at 5 kHz, 6.3 at 100 kHz, 5.86 at 500 kHz and 2 at 1 MHz are observed for 7.5 wt% filler hybrid nanocomposites, which indicates their potential application as a gate material in metal-oxide-semiconductor field-effect transistors (MOSFETs). The alternating current (AC) electrical conductivity demonstrates an increasing behaviour up to \(x=7.5\) wt% filler concentration. The smaller values observed in the real part of the electric modulus (\({M}^{\prime })\) indicates a riddance in electrode polarization. The observed higher frequency shift in the imaginary part of the electric modulus for increasing the filler concentration up to \(x=7.5\) wt%, decreases the relaxation time of the dipole orientation thereby increasing the conductivity mechanism of the hybrid nanocomposites. Apart from these, its small relaxation time with high electrical conductivity favours this material PVA/(x)MWCNT(\(15-x\))ZnO to have prospective application in microwave absorption appliances. The increase in the surface roughness of the film seen from the AFM images up to \(x=7.5\) wt% concentration supports an enhancement in the crystalline nature of the filler. Differential scanning calorimeter studies show an enhancement in glass transition temperature (\(T_{\mathrm{g}})\), melting temperature (\(T_{\mathrm{m}})\) and decomposition temperature (\(T_{\mathrm{d}})\) for PVA filled with MWCNTs and ZnO composites for optimum filler concentration \(x=7.5\) wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Balamurugan A, Ho K C and Chen S M 2009 Synth. Met. 159 2544

    Article  CAS  Google Scholar 

  2. de Barros R A, Martins C R and de Azevedo W M 2005 Synth. Met. 155 35

    Article  Google Scholar 

  3. Rajeswari N, Selvasekarapandian S, Karthikeyan S, Sanjeeviraja C, Iwai Y and Kawamura J 2013 Ionics 19 1105

    Article  CAS  Google Scholar 

  4. Wang Z L, Kong X Y, Ding Y, Gao P, Hughes W L, Yang R et al 2004 Adv. Funct. Mater. 14 943

    Article  CAS  Google Scholar 

  5. Ando M, Kadono K, Haruta M, Sakaguchi T and Miya M 1995 Nature 374 625

    Article  CAS  Google Scholar 

  6. Kumar N B R, Crasta V and Praveen B M 2016 Mater. Res. Express. 3 055012

    Article  Google Scholar 

  7. Mardare D and Rusu G I 2004 J. Optoelectron. Adv. Mater. 6 333

    CAS  Google Scholar 

  8. Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2013 Chem. Soc. Rev. 42 2824

    Article  CAS  Google Scholar 

  9. Zhou Y X, Freitag M, Hone J, Staii C, Johnson A T, Pinto N J et al 2003 Appl. Phys. Lett. 83 3800

    Article  CAS  Google Scholar 

  10. Suman M, Tomara A K and Shyam K 2010 J. Alloys Compd. 508 406

    Article  Google Scholar 

  11. Bhajantri R F, Ravindrachary V, Harisha A, Ranganathaiah C and Kumaraswamy G N 2007 Appl. Phys. A 87 797

    Article  CAS  Google Scholar 

  12. Khanna P K, Singh N, Charan S, Subbarao V, Gokhale R and Mulik U P 2005 Mater. Chem. Phys. 93 117

    Article  CAS  Google Scholar 

  13. Seira M, Takashi N and Takuya G 2012 Polym. J. 44 1056

    Article  Google Scholar 

  14. Nejati K, Rezvani Z and Pakizevand R 2011 Int. Nano Lett. 1 75

    CAS  Google Scholar 

  15. Zidan H M 2003 J. Appl. Polym. Sci. 88 1115

    Article  CAS  Google Scholar 

  16. Bhajantri R F, Ravindrachary V, Harisha A, Crasta V, Suresh Nayak P and Poojary B 2006 Polymer 47 3591

    Article  CAS  Google Scholar 

  17. Rithin Kumar N B, Vincent C, Praveen B M and Mohan K 2015 Nanotechnol. Rev. 4 457

    Google Scholar 

  18. Sherman R D, Middleman L M and Jacobs S M 1983 Polym. Eng. Sci. 23 36

    Article  Google Scholar 

  19. Dutta A, Sinha T P, Jena P and Adak S 2008 J. Non-Cryst. Solids 354 3952

    Article  CAS  Google Scholar 

  20. Kumar M, Tiwari T, Chauhan J K and Srivastava N 2014 Mater. Res. Express 1 049601

    Article  Google Scholar 

  21. Pradhan D K, Choudhary R N P and Samantaray B K 2009 Mater. Chem. Phys. 115 557

    Article  CAS  Google Scholar 

  22. Ruschau G R, Yoshikawa S and Newnham R E 1992 J. Appl. Phys. 72 953

    Article  CAS  Google Scholar 

  23. Mahendia S, Tomar A K and Kumar S 2011 Mater. Sci. Eng. B 176 530

    Article  CAS  Google Scholar 

  24. Janzen J 1975 J. Appl. Phys. 46 966

    Article  Google Scholar 

  25. Gonzalez-Campos J B, Prokhorov E, Sanchez I C, Luna-Barcenas J G, Manzano-Ramirez A, Gonzalez-Hernandez J et al 2012 J. Nanomater. 1 925750

    Google Scholar 

  26. Paul E W, Riccio A J and Wrighton M S 1985 J. Phys. Chem. 89 1441

    Article  CAS  Google Scholar 

  27. Chanmal C V and Jog J P 2008 Express Polym. Lett. 2 294

    Article  CAS  Google Scholar 

  28. Thomas P, Satapathy S, Dwarakanath K and Varma K B 2010 Express Polym. Lett. 4 632

    Article  CAS  Google Scholar 

  29. Jitendra T, Khushbu Rahangdale K and Balasubramanian K 2016 RSC Adv. 6 69733

    Article  Google Scholar 

  30. Dutta P, Biswas S and De S K 2002 Mater. Res. Bull. 37 193

    Article  CAS  Google Scholar 

  31. Bhadra S, Singha N K and Khastgir D 2009 Curr. Appl. Phys. 9 396

    Article  Google Scholar 

  32. Zheng P, Ling X K, Si-Dong L and Pavel S 2006 J. Nanosci. Nanotechnol. 6 3934

    Article  Google Scholar 

  33. Jun-Feng Z, Zhong-Zhen Y, Yu-Xun P, Xiao-Ping F and Yu-Chun O 2002 J. Polym. Sci.: Part B: Polym. Phys. 40 954

    Article  Google Scholar 

  34. Rachna M and Rao K J 2000 Ceram. Intl. 26 371

    Article  Google Scholar 

  35. Cullis C F and Hirschler M M 1981 (Oxford: Clarendon Press)

  36. Anders H and Zimmerman H 1987 Polym. Degrad. Stab. 18 111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N B Rithin Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N.B.R., Crasta, V., Praveen, B.M. et al. A conductive mechanism of PVA (Mowiol 10-98) filled with ZnO and MWCNT nanoparticles. Bull Mater Sci 42, 124 (2019). https://doi.org/10.1007/s12034-019-1803-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1803-7

Keywords

Navigation