Skip to main content
Log in

Effects of sintering conditions on the microstructure and mechanical properties of SiC prepared using powders recovered from kerf loss sludge

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The effects of sintering conditions on the microstructure and mechanical properties of the sintered SiC prepared using the SiC powder recovered from the kerf loss sludge were investigated. The recovered SiC powders were consolidated by spark plasma sintering (SPS) and conventional sintering methods. The effects of sintering temperature, time and methods (SPS and conventional sintering) on the phase, grain size and density of SiC were systematically studied. The Vickers hardness of spark plasma-sintered (SPSed) samples was higher than that of conventional sintered samples due to small grain size. When holding time was increased from 10 to 30 min, the grain size and relative density of SPSed samples were also increased, which lead to the almost constant Vickers hardness by competing effects of grain size and relative density. When holding time was over 30 min, no appreciable change of the relative density and grain size were observed, which can lead to similar values of Vickers hardness. SPS process can be used to make SiC with high density and hardness at relatively low temperature compared with the conventional sintering process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang T C, Chang F C, Peng C Y, Wang H P and Wei Y L 2014 Environ. Technol. 36 2987

    Article  Google Scholar 

  2. Green M A, Emery K, King D L, Hisikawa Y and Warta W 2006 Prog. Photovoltaics 14 45

    Article  Google Scholar 

  3. Jang H D, Kim H, Kil D S and Chang H 2013 J. Nanosci. Nanotechnol. 13 2334

    Article  CAS  Google Scholar 

  4. Rodriguez H, Guerrero I, Koch W, Endrös A L, Franke D, Häßler C et al 2010 in A Luque and S Hegedus (eds) Handbook of photovoltaic science and engineering (Chichester: Wiley) p 218

  5. Woditsch P and Koch W 2002 Sol. Energ. Mat. Sol. C 72 11

    Article  CAS  Google Scholar 

  6. Wang T, Lin Y, Tai C, Sivakumar R, Rai D and Lan C 2008 J. Cryst. Growth 310 3403

    Article  CAS  Google Scholar 

  7. Mühlbauer A, Diers V, Walther A and Grabmaier J 1991 J. Cryst. Growth 108 41

    Article  Google Scholar 

  8. Nishijima S, Izumi Y, Takeda S, Suemoto H, Nakahira A and Horie S 2003 IEEE T. Appl. Supercon. 13 1596

    Article  CAS  Google Scholar 

  9. Lin Y C, Wang T Y, Lan C W and Tai C Y 2010 Powder Technol. 200 216

    Article  CAS  Google Scholar 

  10. Shibata J, Murayama N and Nagae K 2006 Kagaku. Kogaku. Ronbun. 32 93

    Article  CAS  Google Scholar 

  11. Yoko A and Oshima Y 2013 J. Supercrit. Fluids 75 1

    Article  CAS  Google Scholar 

  12. Fthenakis V and Moskowitz P 2008 Prog. Photovoltaics 8 27

    Article  Google Scholar 

  13. Kim Y W and Lee J G 1983 J. Korean Ceram. Soc. 20 115

    CAS  Google Scholar 

  14. Presser V and Nickel K G 2008 Crit. Rev. Solid State 33 1

    Article  CAS  Google Scholar 

  15. Lara A, Ortiz A L, Munoz A and Domínguez-Rodríguez A 2012 Ceram. Int. 38 45

    Article  CAS  Google Scholar 

  16. Zhou Y, Hirao K, Toriyama M and Tanaka H 2000 J. Am. Ceram. Soc. 83 654

    Article  CAS  Google Scholar 

  17. Ohyanagi M, Yamamoto T, Kitaura H, Kodera Y, Ishii T and Munir Z A 2004 Scr. Mater. 50 111

    Article  CAS  Google Scholar 

  18. Yamamoto T A, Kondou T, Kodera Y, Ishii T, Ohyanagi M and Munir Z A 2005 J. Mater. Eng. Perform. 14 460

    Article  CAS  Google Scholar 

  19. Guillard F, Allemand A, Lulewicz J D and Galy J 2007 J. Eur. Ceram. Soc. 27 2725

    Article  CAS  Google Scholar 

  20. Lorrette C, Réau A and Briottet L 2013 J. Eur. Ceram. Soc. 33 147

    Article  CAS  Google Scholar 

  21. Zhang Z H, Wang F C, Luo J, Lee S K and Wang L 2010 Mat. Sci. Eng. A 527 2099

    Article  Google Scholar 

  22. Hayun S, Paris V, Mitrani R, Kalabukhov S, Dariel M, Zaretsky E et al 2012 Ceram. Int. 38 6335

    Article  CAS  Google Scholar 

  23. Lomello F, Bonnefont G, Leconte Y, Herlin-Boime N and Fantozzi G 2012 J. Eur. Ceram. Soc. 32 633

    Article  CAS  Google Scholar 

  24. Sakai T, Watanabe H and Aikawa T 1987 J. Mater. Sci. Lett. 6 865

    Article  CAS  Google Scholar 

  25. Omori M and Takei H 1988 J. Mater. Sci. 23 3744

    Article  CAS  Google Scholar 

  26. Borsa C, Ferreira H and Kiminami R 1999 J. Eur. Ceram. Soc. 19 615

    Article  CAS  Google Scholar 

  27. Zhou Y, Hirao K, Toriyama M and Tanaka H 1999 J. Mater. Res. 19 615

    Google Scholar 

  28. Gomez E, Echeberria J, Iturriza I and Castro F 2004 J. Eur. Ceram. Soc. 24 2895

    Article  CAS  Google Scholar 

  29. Unlu M D, Goller G, Yucel O and Sahin F C 2014 Acta Phys. Pol. A 125 257

    Article  Google Scholar 

  30. Prochazka S 1975 in P Popper (ed.) Special ceramics no. 6 (Stoke-on-Trent: British Ceramic Research Association) p 171

  31. Bind J and Biggers J V 1975 J. Am. Ceram. Soc. 58 304

    Article  CAS  Google Scholar 

  32. Datta M, Bandyopadhyay A and Chaudhuri B 2002 Bull. Mater. Sci. 25 181

    Article  CAS  Google Scholar 

  33. Maitre A, Put A V, Laval J P, Valette S and Trolliard G 2008 J. Eur. Ceram. Soc. 28 1881

    Article  CAS  Google Scholar 

  34. Stobierski L and Gubernat A 2003 Ceram. Int. 29 287

    Article  CAS  Google Scholar 

  35. Guo W, Xiao H, Liu J, Liang J, Gao P and Zeng G 2015 Ceram. Int. 41 11117

    Article  CAS  Google Scholar 

  36. Stobierski L and Gubernat A 2003 Ceram. Int. 29 355

    Article  CAS  Google Scholar 

  37. Cho J Y, An T H, Ji S G, Kim Y S, Shin H I, Kim S W et al 2017 Ceram. Int. 43 15332

    Article  CAS  Google Scholar 

  38. Tamari N, Tanaka T, Tanaka K, Kondoh I, Kawahara M and Tokita M 1995 J. Ceram. Soc. Jpn. 103 740

    Article  CAS  Google Scholar 

  39. Campos K S, Silvab G F L, Nunes E H and Vasconcelos W L 2014 J. Ceram. Process. Res. 15 403

    Google Scholar 

  40. Tsakiris V, Kappel W, Talpeanu D, Albu F, Patroi D and Marinescu V 2014 Adv. Mater. Res. 1029 200

    Article  Google Scholar 

  41. Yoshimura H, Cruz A D, Zhou Y and Tanaka H 2002 J. Mater. Sci. 37 1541

    Article  CAS  Google Scholar 

  42. Hassan A M, Alrashdan A, Hayajneh M T and Mayyas A T 2009 J. Mater. Process. Technol. 209 894

    Article  CAS  Google Scholar 

  43. Akhlaghi F, Lajevardi A and Maghanaki H 2004 J. Mater. Process. Technol. 155 1874

    Article  Google Scholar 

  44. Kang S J L (ed.) 2004 Sintering: densification, grain growth and microstructures (Burlington: Elsevier)

    Google Scholar 

  45. Zhou Y, Tanaka H, Otani S and Bando Y 1999 J. Am. Ceram. Soc. 82 1959

    Article  CAS  Google Scholar 

  46. Chen W, Anselmi-Tamburini U, Garay J, Groza J and Munir Z A 2005 Mater. Sci. Eng. A 394 132

    Article  Google Scholar 

  47. Anselmi-Tamburini U, Gennari S, Garay J and Munir Z A 2005 Mater. Sci. Eng. A 394 139

    Article  Google Scholar 

  48. Chaim R 2007 Mater. Sci. Eng. A 443 25

    Article  Google Scholar 

  49. Gao L and Miyamoto H 1997 J. Inorg. Mater. 12 129

    CAS  Google Scholar 

  50. Lee H S, Yeo J S, Hong S H, Yoon D J and Na K H 2001 J. Mater. Process. Technol. 113 202

    Article  CAS  Google Scholar 

  51. Rice R W, Wu C C and Borchelt F 1994 J. Am. Ceram. Soc. 77 2539

    Article  CAS  Google Scholar 

  52. Zhao Y, Wang L J, Zhang G J, Jiang W and Chen L D 2009 Int. J. Refract. Met. H. 27 177

    Article  CAS  Google Scholar 

  53. Yamamoto T, Kitaura H, Kodera Y, Ishii T, Ohyanagi M and Munir Z A 2004 J. Am. Ceram. Soc. 87 1436

    Article  CAS  Google Scholar 

  54. Chen Z 1993 Mater. Lett. 17 27

    Article  CAS  Google Scholar 

  55. Gubernat A, Stobierski L and Labaj P 2007 J. Eur. Ceram. Soc. 27 781

    Article  CAS  Google Scholar 

  56. Ling H Q, Yao X M, Zhang J X, Liu X J and Huang Z R 2014 J. Eur. Ceram. Soc. 34 831

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industrial strategic technology development program, 10038628, the Development of a production process for SiC powder and pressureless sintered SiC funded by the Ministry of Trade, Industry & Energy (MI, Korea) and the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT & Future Planning (MSIP) (no. NRF-2015R1A5A1037627).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, JY., An, TH., Shin, S.Y. et al. Effects of sintering conditions on the microstructure and mechanical properties of SiC prepared using powders recovered from kerf loss sludge. Bull Mater Sci 41, 157 (2018). https://doi.org/10.1007/s12034-018-1681-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1681-4

Keywords

Navigation