Skip to main content

Advertisement

Log in

Exfoliated \(\hbox {WS}_{2}\) nanosheets: optical, photocatalytic and nitrogen-adsorption/desorption characteristics

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this work, we report on structural, optical, photocatalytic and nitrogen adsorption–desorption characteristics of \(\hbox {WS}_{2 }\) nanosheets developed via a hydrothermal route. X-ray diffraction (XRD) studies have revealed a hexagonal crystal structure, whereas nanodimensional sheets are apparently observed in scanning and transmission electron microscopy (SEM and TEM) micrographs. As compared to the bulk counterpart, the \(\hbox {WS}_{2}\) nanosheets exhibited a clear blue shift. Through Brunauer–Emmett–Teller (BET) surface area analysis, average surface area, pore volume and pore size of the NSs were calculated as 211.5 \(\hbox {m}^{2}~\hbox {g}^{-1}\), 0.433 cc \(\hbox {g}^{-1}\) and 3.8 nm, respectively. The photocatalytic activity of the \(\hbox {WS}_{2}\) nanosheets was also examined with malachite green (MG) as the target dye under both UV and day light (visible) illumination conditions. Accordingly, a degradation efficiency as high as 67.4 and 86.6% were witnessed for an irradiation time duration of 60 min. The nano-\(\hbox {WS}_{2}\) systems have immense potential in optoelectronics, solid-lubrication and other next generation elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chhowalla M, Shin H S, Eda G, Li L-J, Loh K P and Zhang H 2013 Nat. Chem. 5 263

    Article  Google Scholar 

  2. Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699

    Article  CAS  Google Scholar 

  3. Tenne R 2006 Nat. Nanotechnol. 1103

  4. Mishra A K, Lakshmi K V and Huang L 2015 Sci. Rep. 5 15718

    Article  CAS  Google Scholar 

  5. Vattikuti S V P, Byon C and Reddy Ch. Venkata 2016 Mater. Res. Bull. 75 193

  6. Tang G, Tang H, Li C, Li W and Ji X 2011 Mat. Lett. 65 3457

    Article  CAS  Google Scholar 

  7. Shang Y, Xia J, China Zhude Xu and Chen W 2005 J. Disp. Sci. Technol. 26 635

  8. Cao S, Liu T, Hussain S, Zeng W, Peng X and Pan F 2014 Mat. Lett. 129 205

    Article  CAS  Google Scholar 

  9. Srivastava S, Sinha R and Roy D 2004 Aquat. Toxicol. 66 319

    Article  CAS  Google Scholar 

  10. Rabieh S, Bagheri M, Heydari M and Badiei E 2014 Mater. Sci. Semicond. Process. 26 244

    Article  CAS  Google Scholar 

  11. Paul N, Deka A and Mohanta D 2014 J. Appl. Phys. 116 144902

    Article  Google Scholar 

  12. Mao X, Xu Y, Xue Q, Wang W and Gao D 2013 Nanoscale Res. Lett. 8 430

    Article  Google Scholar 

  13. Lin H, Wang J, Luo Q, Peng H, Luo C, Qi R et al 2017 J. Alloys Compd. 699 222

    Article  CAS  Google Scholar 

  14. http://imagej.nih.gov/ij/

  15. Ghorai A, Bayan S, Gogurla N, Midya A and Ray S K 2017 ACS Appl. Mater. Interfaces 558

    Article  CAS  Google Scholar 

  16. Nguyen T P, Choi S, Jeon J-M, Kwon K C, Jang H W and Kim S Y 2016 J. Phys. Chem. C 120 3929

    Article  CAS  Google Scholar 

  17. Nguyen T P, Sohn W, Oh J H, Jang H W and Kim S Y 2016 J. Phys. Chem. C 120 10078

    Article  CAS  Google Scholar 

  18. Molina-Sanchez A and Wirtz L 2011 Phys. Rev. B: Condens. Matter 84 155413

    Article  Google Scholar 

  19. Le Q V, Nguyen T P and Kim S Y 2014 Phys. Status Solidi RRL 8 390

    Article  CAS  Google Scholar 

  20. Berkdemir A, Gutiérrez H R, Botello-Méndez Andrés R, Perea-López Néstor, Elías Ana Laura, Chia C-I et al 2013 Sci. Rep. 3 1755

  21. Hazarika S J and Mohanta D 2017 Appl. Phys. A 123 381

    Article  Google Scholar 

  22. Bingham S and Daoud W A 2011 J. Mater. Chem. 21 2041

    Article  CAS  Google Scholar 

  23. Peng T, Zhao D, Song H and Yan C 2005 J. Mol. Catal. A 238 119

    Article  CAS  Google Scholar 

  24. Gaya U I and Abdullah A H 2008 J. Photochem. Photobiol. C 9 1

    Article  CAS  Google Scholar 

  25. Vattikuti S V and Byon C 2015 Sci. Adv. Mater. 7 2639

    Article  CAS  Google Scholar 

  26. Alothman Z A 2012 Materials 2874

    Article  CAS  Google Scholar 

  27. Kruk M and Jaroniec M 2001 Chem. Mater. 13 316

    Article  Google Scholar 

  28. Butt H-J, Graf K and Kappl M 2006 The Kelvin equation: physics and chemistry of interfaces (Weinheim: Wiley-VCH)

    Google Scholar 

  29. Dutta N, Mohanta D and Choudhury A 2011 J. Appl. Phys. 109 094904

    Article  Google Scholar 

  30. Hazarika S and Mohanta D 2019 J. Luminescence 206 530

Download references

Acknowledgements

We acknowledge IUAC, New Delhi, for the financial support (Project: UFR-56322/2014 and 62312/2017). The initial assistance of Ms Mayuri Bora during experimental work is acknowledged. Further, we thank SAIC, Tezpur University, for extending several analytical facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Mohanta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazarika, S.J., Mohanta, D. Exfoliated \(\hbox {WS}_{2}\) nanosheets: optical, photocatalytic and nitrogen-adsorption/desorption characteristics. Bull Mater Sci 41, 163 (2018). https://doi.org/10.1007/s12034-018-1679-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1679-y

Keywords

Navigation