Skip to main content
Log in

Resistance-switching properties of Bi-doped \(\hbox {SrTiO}_{3}\) films for non-volatile memory applications with different device structures

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

\(\hbox {SrTiO}_{3}\) and Bi-doped \(\hbox {SrTiO}_{3}\) films were fabricated with different device structures using the sol–gel method for non-volatile memory applications, and their resistance-switching behaviour, endurance and retention characteristics were investigated. \(\hbox {SrTiO}_{3}\) and \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films grown on Si or Pt have the same phase structure, morphologies and grain size; however, the grain size of the \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films grown on Si is slightly larger than those of the \(\hbox {SrTiO}_{3}\) films grown on Si and the \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films grown on Pt. The \(\hbox {SrTiO}_{3}\) or \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films grown on Si or Pt all exhibit bipolar resistive-switching behaviour and follow the same conductive mechanism; however, the \(\hbox {Ag}/\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}/\hbox {Si}\) device possesses the highest \(R_{\mathrm{HRS}}{/}R_{\mathrm{LRS}}\) of \(10^{5}\) and the best endurance and retention characteristics. The doping of Bi is conducive to enhance the \(R_{\mathrm{HRS}}{/}R_{\mathrm{LRS}}\) of the \(\hbox {SrTiO}_{3}\) films; meanwhile, the Si substrates help improve the endurance and retention characteristics of the \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Linn E, Rosezin R, Kügeler C and Waser R 2010 Nat. Mater. 9 403

    Article  CAS  Google Scholar 

  2. Pan F, Gao S, Chen C, Song C and Zeng F 2014 Mater. Sci. Eng. R-Rep. 83 1

    Article  Google Scholar 

  3. Wei C, Wang H, Xu J, Zhang Y, Zhang X and Yang L 2017 J. Wuhan Univ. Tech. Mater. Sci. Ed. 32 29

    Article  CAS  Google Scholar 

  4. Lee M J, Lee C B, Lee D, Lee S R, Chang M, Hur J H et al 2011 Nat. Mater. 10 625

    Article  CAS  Google Scholar 

  5. Torrezan A C, Strachan J P, Medeirosribeiro G and Williams R S 2011 Nanotechnology 22 485203

    Article  Google Scholar 

  6. Tang M H, Zeng Z Q, Li J C, Wang Z P, Xu X L, Wang G Y et al 2011 Solid-State Electron. 63 100

    Article  CAS  Google Scholar 

  7. Gao S M, Wang H, Xu J W, Yuan C L and Zhang X W 2012 Solid-State Electron. 76 40

    Article  CAS  Google Scholar 

  8. Yan Z B, Guo Y Y, Zhang G Q and Liu J M 2011 Adv. Mater. 23 1351

    Article  CAS  Google Scholar 

  9. Sun B C, Wang H, Xu J W, Yang L, Zhou S J, Zhang Y P et al 2014 Microelectron. Eng. 113 1

    Article  CAS  Google Scholar 

  10. Wang D, Zhao Y, Xu X, Hercule K M, Yan M, An Q et al 2014 Nanoscale 6 8124

    Article  CAS  Google Scholar 

  11. Peng H and Wu T 2009 Appl. Phys. Lett. 95 152106

    Article  Google Scholar 

  12. He Y, Dai P, Xu J, Lu Y Q and Wang H 2013 Adv. Mater. Res. 788 159

    Article  Google Scholar 

  13. Tang M H, Wang Z P, Li J C, Zeng Z Q, Xu X L, Wang G Y et al 2011 J. Semicond. Sci. Technol. 26 075019

    Article  Google Scholar 

  14. Ruth M, Tobias M, Regina D and Rainer W 2010 Adv. Mater. 22 4819

    Article  Google Scholar 

  15. Song M Y, Seo Y, Kim Y S, Kim H D, An H M, Park B H et al 2012 Appl. Phys. Express 5 091202

    Article  Google Scholar 

  16. Karczewski J, Riegel B, Gazda M, Jasinski P and Kusz B 2010 J. Electroceramics 24 326

    Article  CAS  Google Scholar 

  17. Hashimoto S, Poulsen F W and Mogensen M 2007 J. Alloy. Compd. 439 232

    Article  CAS  Google Scholar 

  18. Fu Q X, Mi S B, Wessel E and Tietz F 2008 J. Eur. Ceram. Soc. 28 811

    Article  CAS  Google Scholar 

  19. Xiang W, Dong R, Lee D, Oh S, Seong D and Hwang H 2007 Appl. Phys. Lett. 90 052110

    Article  Google Scholar 

  20. Chen X G, Ma X B, Yang Y B, Chen L P, Xiong G C, Lian G J et al 2011 Appl. Phys. Lett. 98 122102

    Article  Google Scholar 

  21. Zhang Y, Shen J X, Wang S L, Shen W, Cui C, Li P G et al 2012 Appl. Phys. A 109 219

    Article  CAS  Google Scholar 

  22. Sun J, Jia C H, Li G Q and Zhang W F 2012 Appl. Phys. Lett. 101 133506

    Article  Google Scholar 

  23. Kumar A and Dho J 2013 Curr. Appl. Phys. 13 768

    Article  Google Scholar 

  24. Menke T, Meuffels P, Dittmann R, Szot K and Waser R 2009 J. Appl. Phys. 105 066104

    Article  Google Scholar 

  25. Muenstermann R, Menke T, Dittmann R and Waser R 2010 Adv. Mater. 22 4819

    Article  CAS  Google Scholar 

  26. Wojtyniak M, Szot K, Wrzalik R, Rodenbucher C, Roth G and Waser R 2013 J. Appl. Phys. 113 083713

    Article  Google Scholar 

  27. Tang Z, Xiong Y, Tang M, Cheng C, Xu D, Xiao Y et al 2014 Jpn. J. Appl. Phys. 53 035503

    Article  Google Scholar 

  28. Shannon R D 1976 Acta Cryst. A 32 751

    Article  Google Scholar 

  29. Gong C, Dong G, Hu J, Chen Y, Qin M, Yang S et al 2017 J. Mater. Sci.: Mater. Electron. 28 14893

    CAS  Google Scholar 

  30. Lee C B, Kang B S, Benayad A, Lee M J, Ahn S E, Kim K H et al 2008 Appl. Phys. Lett. 93 042115

    Article  Google Scholar 

  31. Choi J H, Das S N and Myoung J M 2009 Appl. Phys. Lett. 95 062105

    Article  Google Scholar 

  32. Lv H, Wang M, Wan H, Song Y, Luo W, Zhou P, Tang T et al 2009 Appl. Phys. Lett. 94 213502

    Article  Google Scholar 

  33. Tang M H, Jiang B, Xiao Y G, Zheng Q Z, Wang Z P, Li J C et al 2012 Microelectron. Eng. 93 35

    Article  CAS  Google Scholar 

  34. Wang H, Li Z, Xu J, Zhang Y and Yang L 2016 J. Wuhan Univ. Tech. Mater. Sci. Ed. 31 1230

    Article  CAS  Google Scholar 

  35. Xie Y W, Sun J R, Wang D J, Liang S and Shen B G 2006 J. Appl. Phys. 100 033704

    Article  Google Scholar 

  36. Yang Y C, Pan F, Liu Q, Liu M and Zeng F 2009 Nano Lett. 9 1636

    Article  CAS  Google Scholar 

  37. Ielmini D 2011 IEEE Trans. Electron Devices 58 4309

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Guangxi Natural Science Foundation, China (Grant No. 2015GXNSFAA139253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, W., Xu, J. et al. Resistance-switching properties of Bi-doped \(\hbox {SrTiO}_{3}\) films for non-volatile memory applications with different device structures. Bull Mater Sci 41, 149 (2018). https://doi.org/10.1007/s12034-018-1677-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1677-0

Keywords

Navigation