Skip to main content
Log in

Distribution of relaxation times investigation of \(\hbox {Co}^{3+}\) doping lithium-rich cathode material \(\hbox {Li}[\hbox {Li}_{0.2} \hbox {Ni}_{0.1} \hbox {Mn}_{0.5} \hbox {Co}_{0.2}]\hbox {O}_{2}\)

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The element \(\hbox {Co}^{3+}\) was introduced into lithium-rich material \(0.5\hbox {Li}_{2}\hbox {MnO}_{3} \cdot 0.5 \hbox {LiNi}_{0.5}\hbox {Mn}_{0.5}\hbox {O}_{2}\) by a polyacrylamide-assisted sol–gel method to form \(\hbox {Li}[\hbox {Li}_{0.2} \hbox {Ni}_{0.1} \hbox {Mn}_{0.5} \hbox {Co}_{0.2}]\hbox {O}_{2}\) and better electro-chemical performances were observed. Electrochemical impedance spectroscopy spectra were measured on 11 specific open circuit voltage levels on the initial charge profile. Then they were converted to the distribution of relaxation times (DRTs) g(\(\tau \)) by self-consistent Tikhonov regularization method. The obtained DRTs offered a higher resolution in the frequency domain and provided the number and the physical origins of loss processes clearly. Through the analysis of DRTs, the rapid augmentation of resistance to electronic conduction and charge transfer within the voltage range 4.46–4.7 V where the removal of \(\hbox {Li}_{2}\hbox {O}\) from \(\hbox {Li}_{2} \hbox {MnO}_{3}\) component took place was the most remarkable phenomenon and the \(\hbox {Co}^{3+}\) doping greatly reduced the resistance to electronic conduction Re. This gave us more evidence about the complicated ‘structurally integrated’ composite character of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wang L, Li J G, He X M, Pu W H, Wan C R and Jiang C Y 2009 J. Solid State Electrochem. 13 1157

    Article  CAS  Google Scholar 

  2. Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedeka R and Hackney S A 2007 J. Mater. Chem. 17 3053

    Article  Google Scholar 

  3. Kang S H and Amine K 2003 J. Power Sources 124 533

    Article  CAS  Google Scholar 

  4. Lu Z, Chen Z and Dahn J R 2003 Chem. Mater. 15 3214

    Article  CAS  Google Scholar 

  5. Kim J S, Johnson C S, Vaughey J T, Thackeray M M, Hackney S A, Yoon W et al 2004 Chem. Mater. 16 1996

    Article  CAS  Google Scholar 

  6. Balasubramanian M, McBreen J, Davidson I J, Whitfield P S and Kargina I 2002 J. Electrochem. Soc. 149 A176

    Article  CAS  Google Scholar 

  7. Kang S H, Kempgens P, Greenbaum S, Kropf A J, Aminea K and Thackeray M M 2007 J. Mater. Chem. 17 2069

    Article  CAS  Google Scholar 

  8. Thackeray M M, Johnson C S, Vaughey J T, Li N and Hackney S A 2005 J. Mater. Chem. 15 2257

    Article  CAS  Google Scholar 

  9. Chao C, Chen S, Shui M, Xu X P, Zheng W D, Feng L et al 2015 Curr. Appl. Phys. 15 149

    Article  Google Scholar 

  10. Levi M and Aurbach D 1997 J. Phys. Chem. B 101 4630

    Article  CAS  Google Scholar 

  11. Weese J 1992 Comput. Phys. Commun. 69 99

    Article  Google Scholar 

  12. Honerkamp J and Weese J 1990 Continuum Mech. Thermodyn. 2 17

    Article  Google Scholar 

  13. Weese J 1989 Diploma thesis, Universität Freiburg

  14. van Loan C 1976 J. Numer. Anal. 13 76

    Article  Google Scholar 

  15. Zheng W D, Xu X P, Cheng L L, Shui M, Shu J, Gao S et al 2013 Ionics 19 1509

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support for this work from 973 Fundamental research program from the Ministry of Science and Technology of China (grant no. 2010CB635116), NSFC project 21173190, National Science Foundation of Zhejiang Province (grant no. LY13B010003), Ningbo Science & Technology Bureau Project 2017A610023 and K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao Shui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Li, Y., Yao, X. et al. Distribution of relaxation times investigation of \(\hbox {Co}^{3+}\) doping lithium-rich cathode material \(\hbox {Li}[\hbox {Li}_{0.2} \hbox {Ni}_{0.1} \hbox {Mn}_{0.5} \hbox {Co}_{0.2}]\hbox {O}_{2}\). Bull Mater Sci 41, 155 (2018). https://doi.org/10.1007/s12034-018-1670-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1670-7

Keywords

Navigation