Skip to main content
Log in

Optimization of the liquid–liquid interfacial precipitation method for the synthesis of \(\hbox {C}_{60}\) nanotubes

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Tubular fullerene nanowhiskers called ‘fullerene nanotubes’ are composed of \(\hbox {C}_{60}\) fullerene molecules (\(\hbox {C}_{60}\) NTs) are synthesized at room temperature using the liquid–liquid interfacial precipitation method in the pyridine and isopropyl alcohol (IPA) system. The growth control of fullerene nanotubes is important for their chemical and physical properties as well as for their future applications. In the present study, we investigated the effect of light, water, solvent ratio and temperature on the synthesis of \(\hbox {C}_{60}\) nanotubes. A marked development in the yield of \(\hbox {C}_{60}\) NTs was achieved using dehydrated solvents, a solution with a volume ratio of 1:9 for pyridine: IPA, a growth temperature equal to \(5{^{\circ }}\hbox {C}\) and by illuminating the \(\hbox {C}_{60}\)-pyridine solution with ultraviolet light (wavelength 302 nm) for 102 h. The synthesized fullerene nanotubes were characterized by different analytical techniques including Raman and Fourier transform infrared spectroscopy, optical microscopy, focussed ion beam scanning electron microscopy and transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Miyazawa K, Obayashi A and Kuwabara M 2001 J. Am. Ceram. Soc. 84 3037

    Article  CAS  Google Scholar 

  2. Liu H, Li Y, Jiang L, Luo H, Xiao S, Fang H et al 2002 J. Am. Chem. Soc. 124 13370

    Article  CAS  Google Scholar 

  3. Miyazawa K, Kuwasaki Y, Obayashi A and Kuwabara M 2002 J. Mater. Res17 83

    Article  CAS  Google Scholar 

  4. Miyazawa K and Suga T 2004 J. Mater. Res. 19 3145

    Article  CAS  Google Scholar 

  5. Miyazawa K, Minato J, Yoshii T, Fujino M and Suga T 2005 J. Mater. Res. 20 688

    Article  CAS  Google Scholar 

  6. Miyazawa K, Mashino T and Suga T 2003 J. Mater. Res. 18 2730

    Article  CAS  Google Scholar 

  7. Miyazawa K, Minato J, Mashino T, Nakamura S, Fujino M and Suga T 2006 Nukleonika 51 S41

    CAS  Google Scholar 

  8. Miyazawa K and Suga T 2004 J. Mater. Res. 19 2410

    Article  CAS  Google Scholar 

  9. Zhang X, Jiao K, Piao G, Liu S and Li S 2009 Synth. Met. 159 419

    Article  CAS  Google Scholar 

  10. Ringor C L and Miyazawa K 2008 Diamond Relat. Mater. 17 529

    Article  CAS  Google Scholar 

  11. Kizuka T, Saito K and Miyazawa K 2008 Diamond Relat. Mater. 17 972

    Article  CAS  Google Scholar 

  12. Miyazawa K 2009 J. Nanosci. Nanotechnol. 9 41

    Article  CAS  Google Scholar 

  13. Miyazawa K and Ringor C 2008 Mater. Lett. 62 410

    Article  CAS  Google Scholar 

  14. Wang B L, Liu B, Liu D, Yao M, Hou Y, Yu S et al 2006 Adv. Mater. 18 1883

    Article  CAS  Google Scholar 

  15. Ji H X, Hu J S, Tang Q X, Song W G, Wang C R, Hu W P et al 2007 J. Phys. Chem. C 111 10498

    Article  CAS  Google Scholar 

  16. Minato J, Miyazawa K and Suga T 2005 Sci. Technol. Adv. Mater. 6 272

    Article  CAS  Google Scholar 

  17. Rauwerdink K, Liu J F, Kintigh J and Miller G P 2007 Microsc. Res. Tech. 70 513

    Article  CAS  Google Scholar 

  18. Miyazawa K and Hotta K 2010 J. Cryst. Growth 312 2764

    Article  CAS  Google Scholar 

  19. Miyazawa K, Kuriyama R, Shimomura S, Wakahara T and Tachibana M 2014 J. Cryst. Growth 388 5

    Article  CAS  Google Scholar 

  20. Heymann D 1996 Carbon NY 34 627

    Article  CAS  Google Scholar 

  21. Ruoff R S, Tse D S, Malhotra R and Lorents D C 1993 J. Phys. Chem. 97 3379

    Article  CAS  Google Scholar 

  22. Nath S, Pal H, Palit D K, Sapre A V and Mittal J P 1998 J. Phys. Chem. B 102 10158

    Article  CAS  Google Scholar 

  23. Bokare A D and Patnaik A 2005 J. Phys. Chem. B 109 87

    Article  CAS  Google Scholar 

  24. Qu Y, Yu W, Niu N, Liang S, Li G and Piao G 2012 Condens. Matter Phys. https://doi.org/10.5402/2012/140842

  25. Kruegert G C and Miller C W 1953 J. Chem. Phys21 2018

    Article  Google Scholar 

  26. Andrievsky G V, Klochkov V K, Bordyuh A B and Dovbeshko G I 2002 Chem. Phys. Lett. 364 8

  27. Mahdaoui D, Abderrabba M, Hirata C, Wakahara T and Miyazawa K 2016 J. Sol. Chem. https://doi.org/10.1007/s10953-016-0497-3

  28. Guo J H, Luo Y, Augustsson A, Kashtanov S, Rubensson J E, Shuh D K et al 2003 Phys. Rev. Lett. https://doi.org/10.1103/91.157401

  29. Miyazawa K and Hotta K 2011 J. Nanopart. Res. https://doi.org/10.1007/s11051-010-0132-y

  30. Nath S, Pal H, Sapre A V and Mittal J P 2003 J. Photosci10 105

    CAS  Google Scholar 

  31. Imahori H, Hagiwara K, Akiyama T, Taniguchi S, Okada T and Sakata Y 1995 Chem. Lett. 265

  32. Kuciauskas D, Lin S, Seely G R, Moore A L, Moore T A, Gust D et al 1996 J. Phys. Chem. 100 15926

    Article  CAS  Google Scholar 

  33. Cheng J, Fang Y, Huang Q, Yan Y J and Li X Y 2000 Chem. Phys. Lett330 262

    Article  CAS  Google Scholar 

  34. Mrzel A, Mertelj A, Omerzu A, Copic M and Mihailovic D 1999 J. Phys. Chem. B 103 11256

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Part of this research was supported by Japan Society for the Promotion of Science JSPS KAKENHI (grant number 26600007). TEM analysis of this work was conducted at Advanced Characterization Nanotechnology Platform of Tokyo University, supported by ‘Nanotechnology platform’ of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorra Mahdaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdaoui, D., Hirata, C., Omri, N. et al. Optimization of the liquid–liquid interfacial precipitation method for the synthesis of \(\hbox {C}_{60}\) nanotubes. Bull Mater Sci 41, 165 (2018). https://doi.org/10.1007/s12034-018-1665-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1665-4

Keywords

Navigation