Skip to main content
Log in

Effect of annealing-temperature-assisted phase evolution on conductivity of solution combustion processed calcium vanadium oxide films

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this work, the effect of annealing temperature on the conductivity of solution-combustion-synthesized calcium vanadium oxide (CVO) films was studied. Conductivity was tailored by the appearance of the phases like \(\hbox {CaVO}_{3}\), \(\hbox {CaV}_{2}\hbox {O}_{5}\) and \(\hbox {Ca}_{2}\hbox {V}_{2}\hbox {O}_{7}\) as a function of annealing temperature; \(\hbox {CaVO}_{3}\) and \(\hbox {CaV}_{2}\hbox {O}_{5}\) are responsible for high conductivity, whereas \(\hbox {V}^{5+}\) presence in \(\hbox {Ca}_{2}\hbox {V}_{2}\hbox {O}_{7}\) contributes towards dielectric nature. Evolution of phases of CVO was identified through X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. A detailed conductivity measurement as a function of annealing temperature helps us to identify the decreasing trend of conductivity with increasing temperature up to \(400{^{\circ }}\hbox {C}\); beyond this it behaves like an insulator. There was a stable conductivity while aging the films in ambient for a few days. This study revealed safe application temperature domain of CVO, and a clear correlation of electrical conductivity with the in-depth structural–compositional–morphological study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Badeker K 1907 Ann. Phys. 22 749

    Article  Google Scholar 

  2. Minami T 2008 Thin Solid Films 516 5822

    Article  CAS  Google Scholar 

  3. Pasquarelli R M, Ginley D S and O’Hayre R 2011 Chem. Soc. Rev. 40 5406

    Article  CAS  Google Scholar 

  4. Lewis B G and Paine D C 2000 MRS Bull. 25 22

    Article  CAS  Google Scholar 

  5. Zhang L, Zhou Y, Guo L, Zhao W, Barnes A, Zhang H T et al 2016 Nat. Mater. 15 204

    Article  CAS  Google Scholar 

  6. Jung D W, Park H J, Kwak C, Byungki R and Lee K H 2017 US Patent 20150123046A1, May 2015

  7. Minami T 2005 Semicond. Sci. Technol. 20 S35

    Article  CAS  Google Scholar 

  8. Eaton C, Lapano J, Zhang L, Brahlek M and Engel-Herbert R 2017 J. Vac. Sci. Technol. A: Vac. Surf. Films 35 061510

    Article  Google Scholar 

  9. Fukushima A, Murata K, Morikawa K, Iga F, Kido G and Nishihara Y 1994 Physica B: Condens. Matter 194 1161

    Article  Google Scholar 

  10. Falcon H, Alonso J, Casais M, Martınez-Lope M and Sánchez-Benıtez J 2004 J. Solid State Chem. 177 3099

    Article  CAS  Google Scholar 

  11. Ueda Y 1998 J. Solid State Chem. 135 36

    Article  CAS  Google Scholar 

  12. Yu R, Xue N, Huo S, Li J and Wang J 2015 RSC Adv. 5 63502

    Article  CAS  Google Scholar 

  13. Yao G G, Pei C J, Xu J G, Liu P, Zhou J P and Zhang H W 2015 J. Mater. Sci.: Mater. Electron. 26 7719

    CAS  Google Scholar 

  14. Qiu K, Li J, Li J, Lu X, Gong Y and Li J 2010 J. Mater. Sci. 45 5456

    Article  CAS  Google Scholar 

  15. Liberati M, Chopdekar R, Mehta V, Arenholz E and Suzuki Y 2009 J. Magn. Magn. Mater. 321 2852

    Article  CAS  Google Scholar 

  16. Engel-herbert R and Zhang L 2016 US Patent 20160180982A1, June

  17. Chen Z, Li W, Li R, Zhang Y, Xu G and Cheng H 2013 Langmuir 29 13836

    Article  CAS  Google Scholar 

  18. Gupta B, Pujar P, Mal S S, Gupta D and Mandal S 2018 Ceram. Int. 44 1500

    Article  CAS  Google Scholar 

  19. Kim M G, Kanatzidis M G, Facchetti A and Marks T J 2011 Nat. Mater. 10 382

    Article  CAS  Google Scholar 

  20. Fukushima A, Iga F, Inoue I H, Murata K and Nishihara Y 1994 J. Phys. Soc. Jpn. 63 409

    Article  CAS  Google Scholar 

  21. Garcia-Jaca J, Larramendi J I R, Insausti M, Arriortua M I and Rojo T 1995 J. Mater. Chem. 5 1995

    Article  CAS  Google Scholar 

  22. Joung M R, Kim J S, Song M E, Nahm S and Paik J H 2009 J. Am. Ceram. Soc. 92 3092

    Article  CAS  Google Scholar 

  23. Beck S, Sclauzero G, Chopra U and Ederer C 2018 arXiv preprint arXiv:1801.03036

  24. Gu M, Laverock J, Chen B, Smith K E, Wolf S A and Lu J 2013 J. Appl. Phys. 113 133704

    Article  Google Scholar 

  25. Chen H L, Lu Y M and Hwang W S 2005 Surf. Coat. Technol. 198 138

    Article  CAS  Google Scholar 

  26. Anisimov V I (ed) 2010 AIP Conference Proceedings

  27. Griffith W and Lesniak P 1969 J. Chem. Soc. A: Inorg. Phys. Theor. 1066

  28. Deo G, Hardcastle F, Richards M, Hirt A and Wachs I E 1990 ACS Symp. Ser. 437 317

    Article  CAS  Google Scholar 

  29. Hardcastle F D and Wachs I E 1991 J. Phys. Chem. 95 5031

    Article  CAS  Google Scholar 

  30. Popovic Z, Stergiou V, Raptis Y, Konstantinovic M, Isobe M, Ueda Y et al 2002 J. Phys.: Condens. Matter 14 L583

    CAS  Google Scholar 

  31. Ureña-Begara F, Crunteanu A and Raskin J P 2017 Appl. Surf. Sci. 403 717

    Article  Google Scholar 

  32. Sarkar S, Veluri P and Mitra S 2014 Electrochim. Acta 132 448

    Article  CAS  Google Scholar 

  33. Ardelean I, Andronache C, Cîmpean C and Pascuta P 2004 Mod. Phys. Lett. B 18 45

    Article  CAS  Google Scholar 

  34. Gu J and Yan B 2009J. Alloys Compd. 476 619

    Article  CAS  Google Scholar 

  35. Frederickson L and Hausen D 1963 Anal. Chem. 35 818

    Article  CAS  Google Scholar 

  36. Pan X, Ren G, Hoque M N F, Bayne S, Zhu K and Fan Z 2014 Adv. Mater. Interfaces 1 1400398

    Article  Google Scholar 

  37. Liu Y, Liu J, Li Y, Wang D, Ren L and Zou K 2016 Opt. Mater. Express 6 1552

    Article  CAS  Google Scholar 

  38. Dudric R, Vladescu A, Rednic V, Neumann M, Deac I and Tetean R 2014 J. Mol. Struct. 1073 66

    Article  CAS  Google Scholar 

  39. Chu D H, Vinoba M, Bhagiyalakshmi M, Baek I H, Nam S C, Yoon Y et al 2013 RSC Adv. 3 21722

    Article  CAS  Google Scholar 

  40. Zhang W, Liu T, Hu X and Gong J 2012 RSC Adv. 2 514

    Article  CAS  Google Scholar 

  41. Silversmit G, Depla D, Poelman H, Marin G B and De Gryse R 2004 J. Electron Spectrosc. Relat. Phenom. 135 167

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Engineering Research Board (SERB), Department of Science and Technology (ECR/2015/000339). We would like to thank the Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka (NITK), Surathkal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumen Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunath, G., Vardhan, R.V., Salian, A. et al. Effect of annealing-temperature-assisted phase evolution on conductivity of solution combustion processed calcium vanadium oxide films. Bull Mater Sci 41, 126 (2018). https://doi.org/10.1007/s12034-018-1644-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1644-9

Keywords

Navigation