Skip to main content
Log in

Luminescence property of Ca3(VO4)2:Eu3+ dependence on molar ratio of Ca/V and solution combustion synthesis temperature

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Red emitting phosphor Ca3(VO4)2:Eu3+ was prepared by citric acid-assisted solution combustion method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and fluorescence spectrophotometer. The influences of Ca to V molar ratio and synthesis temperature on phase composition, morphology, grain size, photofluorescence properties, and ultraviolet–visible diffuse reflectance spectra (UV–Vis DRS) of as-synthesized samples were investigated. The results indicate that Ca to V molar ratio play a key role for the changing of phase composition, excitation spectrum, and luminescence intensity. The sample prepared at 900 °C, keeping Ca/V = 3:2.2, has the highest photoluminescence intensity. The possible causes of the effects on photoluminescence mechanism were also discussed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Riwotzki K, Haase M (2001) J Phys Chem B 105:12709. doi:10.1021/jp0113735

    Article  CAS  Google Scholar 

  2. Osvaldo AS, Simone AC, Renata RI (2000) J Alloys Compd 303–304:316. doi:10.1016/S0925-8388(00)00595-8

    Google Scholar 

  3. Panayiotakis G, Cavouras D, Kandarakis I, Nomicos C (1996) Appl Phys A 62:483. doi:10.1007/BF01567121

    Article  ADS  Google Scholar 

  4. Brixner LH, Flournoy PA (1965) J Electrochem Soc 112:303. doi:10.1149/1.2423528

    Article  CAS  Google Scholar 

  5. Andrade LHC, Reyes Ardila D, Andreeta JP, Siu Li M (2003) Opt Mater 22:369. doi:10.1016/S0925-3467(02)00371-3

    Article  CAS  ADS  Google Scholar 

  6. Grzechnik A, Mcmillan PF (1997) J Solid State Chem 132:156. doi:10.1006/jssc.1997.7435

    Article  CAS  ADS  Google Scholar 

  7. Glass AM, Abrahams SC, Ballman AA, Loiacono G (1978) Ferroelectrics 17:579. doi:10.1080/00150197808236782

    CAS  Google Scholar 

  8. Lee SS, Kim HJ, Byeon SH, Park JC, Kim DK (2005) Ind Eng Chem Res 44:4300. doi:10.1021/ie048953j

    Article  CAS  Google Scholar 

  9. Ding WJ, Wang J, Zhang M, Zhang QH, Su Q (2006) J Solid State Chem 179:3582. doi:10.1016/j.jssc.2006.07.007

    Article  CAS  ADS  Google Scholar 

  10. Su MZ, Zhou J (1994) J Alloys Compd 207–208:406. doi:10.1016/0925-8388(94)90250-X

    Google Scholar 

  11. Yan B, Su XQ (2007) J Alloys Compd 431:342. doi:10.1016/j.jallcom.2006.05.095

    Article  CAS  Google Scholar 

  12. Yan B, Su XQ (2007) Optical Mater 29:1866. doi:10.1016/j.optmat.2006.10.024

    Article  CAS  ADS  Google Scholar 

  13. Forbes AR, McMillen CD, Giesber HG, Kolis JW (2008) J Crystal Growth 310:4472. doi:10.1016/j.jcrysgro.2008.06.067

    Article  CAS  ADS  Google Scholar 

  14. Wu JH, Yan B (2008) J Alloys Compd 455:485. doi:10.1016/j.jallcom.2007.01.162

    Article  CAS  Google Scholar 

  15. Yu M, Lin J, Wang Z, Fu J, Wang S, Zhang HJ, Han YC (2002) Chem Mater 14:2224. doi:10.1021/cm011663y

    Article  CAS  Google Scholar 

  16. Zhang J, Zhang Z, Tang Z, Tao Y, Long X (2002) Chem Mater 14:3005. doi:10.1021/cm011744u

    Article  CAS  Google Scholar 

  17. Li J, Kuwabara M (2003) Sci Technol Adv Mater 4:143. doi:10.1016/S1468-6996(03)00027-5

    Article  CAS  Google Scholar 

  18. Zhang HP, Lü MK, Yang ZS, Xiu ZL, Zhou GJ, Wang SF, Zhou YY, Wang SM (2006) J Alloys Compd 426:384. doi:10.1016/j.jallcom.2006.02.028

    Article  CAS  Google Scholar 

  19. Cousin P, Ross RA (1990) Mater Sci Eng A 130:119. doi:10.1016/0921-5093(90)90087-J

    Article  Google Scholar 

  20. Wang X, Chen XY, Gao LS, Zheng HG, Ji MR, Shen T, Zhang ZD (2003) J Crystal Growth 256:123. doi:10.1016/S0022-0248(03)01289-2

    Article  CAS  ADS  Google Scholar 

  21. Van Landschoot N, Kelder EM, Schoonman J (2004) Solid State Ionics 166:307. doi:10.1016/j.ssi.2003.11.006

    Article  Google Scholar 

  22. Kubelka P, Munk F (1931) Z Tech Phys 12:593–601

    Google Scholar 

  23. Blasse G (2006) The luminescence of closed-shell transition-metal complexes. new developments. In: Luminescence and energy transfer. Springer-Verlag, Berlin, pp 1–41

    Google Scholar 

  24. Ray S, Pramanik P, Singha A, Roy A (2005) J Appl Phys 97(9):094312. doi:10.1063/1.1884759

    Article  ADS  Google Scholar 

  25. Judd BR (1962) Phys Rev 127(3):750. doi:10.1103/PhysRev.127.750

    Article  CAS  ADS  Google Scholar 

  26. Ofelt GS (1962) J Chem Phys 37(3):511. doi:10.1063/1.1701366

    Article  CAS  ADS  Google Scholar 

  27. Yu M, Lin J, Fang J (2005) Chem Mater 17(7):1783. doi:10.1021/cm0479537

    Article  CAS  Google Scholar 

  28. Blasse G (1966) J Chem Phys 45(7):2356. doi:10.1063/1.1727946

    Article  CAS  ADS  Google Scholar 

  29. Dolgos MR, Paraskos AM, Stoltzfus MW, Yarnell SC, Woodward PM (2009) J.Solid State Chem 182:1964. doi:10.1016/j.jssc.2009.04.032

    Article  CAS  ADS  Google Scholar 

  30. Liu B, Shi CS, Zhang QL (2002) J Alloys Compd 333:215. doi:10.1016/S0925-8388(01)01711-X

    Article  CAS  Google Scholar 

  31. Belletti A, Borromei R, Cavalli E, Oleari L (1998) Eur J Solid State Inorg Chem 35:483. doi:10.1016/S0992-4361(98)80025-8

    Article  CAS  Google Scholar 

  32. Yu YQ, Zhou SH, Zhang SY (2003) J Alloys Compd 351:84. doi:10.1016/S0925-8388(02)01031-9

    Article  CAS  Google Scholar 

  33. Haase M, Riwotzki K, Meyssamy H, Kornowski A (2000) J Alloys Compd 303–304:191. doi:10.1016/S0925-8388(00)00628-9

    Article  Google Scholar 

  34. Huignard A, Buissette V, Franville A-C (2003) J Phys Chem B 107:6754. doi:10.1021/jp0342226

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Key Scientific and Technological Research and Development Program (Grant No. 07GG002-002), The Natural Science Foundation (Grant No. 08GY0082), and the Nature Science Foundation of the Panzhihua City (Grant No. 2009CY-C-4) in Sichuan Province, P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kehui Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, K., Li, J., Li, J. et al. Luminescence property of Ca3(VO4)2:Eu3+ dependence on molar ratio of Ca/V and solution combustion synthesis temperature. J Mater Sci 45, 5456–5462 (2010). https://doi.org/10.1007/s10853-010-4598-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4598-x

Keywords

Navigation