Skip to main content
Log in

Eco-friendly method to synthesize and characterize 2D nanostructured (1,2-bis(diphenyl-phosphino)ethyl) tungsten tetracarbonyl methyl red/copper oxide di-layer thin films

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Three-layer thicknesses (\({T}_{1 }= 50\), \({T}_{2 }= 75\) and \({T}_{3 }= 100\) nm) of 1,2-bis(diphenylphosphino)ethyl tungsten tetracarbonyl methyl red (DPE-W-MR) were deposited onto the CuO thin film (50 nm) to produce DPE-W-MR/CuO di-layer thin films by sol–gel spin-coating technique. The composition and the chemical structure of the as-prepared thin films were characterized using various techniques including elemental analysis, Fourier transform infrared spectroscopy, \(^{1}\hbox {H}\)-NMR and X-ray diffraction (XRD). Scanning electron microscopy was used to investigate the size and shape of the CuO nanoparticles and the fabricated thin films. The films are crystalline as evidenced by the XRD pattern and DPE-W-MR has an orthorhombic crystal system. The crystallite size was calculated from an analysis of the line broadening features using the Scherrer formula; the average crystallite sizes of DPE-W-MR/CuO di-layer thin films are 52.92, 56.24 and 72.26 nm for \({T}_{1}\), \({T}_{2}\) and \({T}_{3}\), respectively. Thermogravimetric analysis and the thermal curve of DPE-W-MR complex were studied. Optical properties of DPE-W-MR/CuO di-layer thin films are discussed. The optical band gap energies of DPE-W-MR di-layer thin films/CuO decreased (2.25, 2.1 and 1.88 eV) as the film thickness increased (from \({T}_{1}\) to \({T}_{3})\). Based on the optical results and the quantum confinement effects, the DPE-W-MR/CuO di-layer thin films may be candidates as semiconductor materials for optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu Z, Liu G, Liu X, Huang S, Liu M, Fu Guolan et al 2015 Mater. Lett. 139 12

    Article  Google Scholar 

  2. Hosny N M, Samir G, Zoromba M S and Alghool S 2017 J. Polym. Plast. Technnol. Eng. 56 435

    Article  Google Scholar 

  3. Zoromba M S, Bassyouni M and Abdel-Hamid S 2015 Rubber Chem. Technol. 88 449

    Article  Google Scholar 

  4. Zoromba M S, Ismail M I M, Bassyouni M, Abdel-Aziz M H, Numan S, Alshahrie A et al 2017 Coll. Surf. A Phys. Chem. Eng. Asp. 520 121

  5. Al-Hossainy A F 2016 Bull. Mater. Sci. 39 209

    Article  Google Scholar 

  6. Pate J, Zamora F, Watson M D S, Wright G N, Horrocks B and Houlton A 2014 J. Mater. Chem. C 2 9265

    Article  Google Scholar 

  7. Liao Y-C and Kao Z-K 2012 ACS Appl. Mater. Interface 10 5109

    Article  Google Scholar 

  8. Liu T, Vilar R, Eugénio S, Joseph G and Yann D 2015 J. Appl. Electrochem. 45 87

    Article  Google Scholar 

  9. Yang-Kai H, Shih-Pin C, Su C-H and Liao Y-C 2015 Sci. Adv. Mater. 7 227

    Article  Google Scholar 

  10. Volpati D, Spada E R, Plá Cid C C, Sartorelli M L, Aroca R and Constantino C 2015 Analyst 140 476

    Article  Google Scholar 

  11. Yonezawa Y, Takami A and Sato T 1990 J. Appl. Phys. 68 1297

    Article  Google Scholar 

  12. Griffiths M, Pallister P, Mandia D and Barry S 2015 Chem. Mater. 28 44

    Article  Google Scholar 

  13. Hyeong-Chul Y, Jin-Ha S, Park H-S and Su-Jeong S 2015 J. Nanosci. Nanotechnol. 15 1601

    Article  Google Scholar 

  14. Nagai H, Mita S, Takano I, Honda T and Sato M 2015 Mater. Lett. 141 235

    Article  Google Scholar 

  15. Ghotbi M and Rahmati Z 2015 Mater. Des. 85 719

    Article  Google Scholar 

  16. Walker S D, Barder T E, Martinelli J and Buchwald S 2004 Angew. Chem. Int. Ed. 43 1871

    Article  Google Scholar 

  17. Caminade A-M, Maraval V, Laurent R and Majoral J-P 2002 Curr. Org. Chem. 6 739

    Article  Google Scholar 

  18. Iwasawa T, Tokunaga M, Obora Y and Tsuji Y 2004 J. Am. Chem. Soc. 126 6554

    Article  Google Scholar 

  19. Niyomura O, Iwasawa T, Sawada N, Tokunaga M, Obora Y and Tsuji Y 2005 Organometallics 24 3468

    Article  Google Scholar 

  20. Chen J, Law C, Lam J, Dong Y, Lo S, Williams I et al 2003 Chem. Mater. 15 1535

    Article  Google Scholar 

  21. Verma A, Hirsch D, Glatt C, Ronnett G and Snyder S 1993 Sci. Wash. 259 381

    Article  Google Scholar 

  22. Clark J, Naughton P, Shurey S, Green C, Johnson T, Mann B et al 2003 Circ. Res. 93 e2

  23. Awad I, Hassan F, Mohamed A and Al-Hossainy A 2004 J. Phosphorus Sulfur Silicon 179 1251

    Article  Google Scholar 

  24. Hassan F, Al-Hossainy A and Mohamed A 2009 J. Phosphorus Sulfur Silicon 184 2996

    Article  Google Scholar 

  25. Badr M, El-Amin A and Al-Hossainy A 2008 J. Phys. Chem. C 112 14188

    Article  Google Scholar 

  26. Badr M, El-Amin A and Al-Hossainy A 2006 Eur. Phys. J. B 53 439

    Article  Google Scholar 

  27. Takakazu Y, Yoshio E, Minoru K and Akio Y 1980 Bull. Chem. Soc. Jpn. 53 1299

    Article  Google Scholar 

  28. Maury R, Jhamb S, Roy S, Chourasia J, Sharma A and Vishwakarma P 2015 Arab. J. Chem. 8 143

    Article  Google Scholar 

  29. El-Morsy F, Jean-Claude B, Butler I, El-Sayed S and Mostafa S 2014 Inorg. Chim. Acta 423 144

    Article  Google Scholar 

  30. El-Hendawy A M, El-Kourashy A E-G and Shanab M M 1992 Polyhedron 11 523

    Article  Google Scholar 

  31. Santra P, Sinha C, Sheen W-J, Liao F-L and Lu T-H 2001 Polyhedron 20 599

    Article  Google Scholar 

  32. Maurya M, Jayaswal M, Puranik V, Chakrabarti P, Gopinathan S and Gopinathan 1997 Polyhedron 16 3977

  33. Chand P, Gaur A and Kumar A 2013 Superlattices Microstruc. 60 129

    Article  Google Scholar 

  34. Valentini A, Nappi E and Nitti M 2002 Nucl. Instrum. Methods Phys. Res. A 482 238

    Article  Google Scholar 

  35. Myburg G and R Swanepoel 1987 J. Non-Cryst. Solids 89 13

  36. Minkov D 1989 J. Phys. D Appl. Phys. 22 199

    Article  Google Scholar 

  37. Manifacier J, Gasiot J and Fillard J 1976 J. Phys. E Sci. Instrum. 9 1002

    Article  Google Scholar 

  38. Zoromba M, Al-Hossainy A and Abdel-Aziz M 2017 Synth. Met. 231 34

    Article  Google Scholar 

  39. Trilok, Rai R and Singh B K 2015 Nucl. Instrum. Methods Phys. Res. A 785 70

  40. Al-Hossainy A and Ali I 2015 Opt. Mater. 46 131

    Article  Google Scholar 

  41. Al-Hossainy A and Ali I 2015 Mater. Sci. Semicond. Proc. 38 13

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Faculty of Science, New Valley Branch, Assiut University (AUN) and Northern Border University (NBU), Arar. We, therefore, acknowledge with thanks AUN and NBU financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Farouk Al-Hossainy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hossainy, A.F., Zoromba, M.S. & Hassanien, R. Eco-friendly method to synthesize and characterize 2D nanostructured (1,2-bis(diphenyl-phosphino)ethyl) tungsten tetracarbonyl methyl red/copper oxide di-layer thin films. Bull Mater Sci 41, 80 (2018). https://doi.org/10.1007/s12034-018-1594-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1594-2

Keywords

Navigation