Skip to main content
Log in

The use of biodegradable polymers for the stabilization of copper nanoparticles synthesized by chemical reduction method

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Copper nanoparticles were synthesized by a convenient and rapid chemical reduction method in ambient condition using \(\hbox {Cu}(\hbox {NO}_{3})_{2}{\cdot } 3\hbox {H}_{2}\hbox {O}\) as a precursor, hydrazine hydrate as reducing agent and deionized water as solvent. The product was characterized by X-ray diffraction (XRD) patterns, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and UV–Vis spectroscopy. However, agglomerated copper nanoparticles were obtained by this chemical reduction method. Hence, the effects of three polymers of polyvinyl pyrrolidone, polyethylene glycol (PEG) and starch as stabilizers on the size and size distribution of Cu nanoparticles were investigated. According to the results, smallest copper nanoparticles (30–50 nm) with a narrow size distribution were obtained using PEG as the stabilizing polymer. Zero-valent copper nanoparticles with high purity were obtained by this method and there was no peak related to the oxidized impurities such as CuO and \(\hbox {Cu}_{2}\hbox {O}\) in the XRD and UV–Vis studies, both in the presence and in the absence of stabilizer. On the other hand, by this method, zero-valent copper nanoparticles were obtained in the absence of any anti-oxidant agent and any inert gas flow. The effects of synthesis parameters including initial concentration of precursor, polymer concentration and the reaction temperature on the size and size distribution of copper nanoparticles were investigated using the UV–Vis analysis to determine the optimum synthesis conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang G, Zhang Z, Zhang S, Yu L and Zhang P 2013 Mater. Res. Bull. 48 1716

    Article  Google Scholar 

  2. Wang S, Huang X, He Y, Huang H, Wu Y, Hou L et al 2012 Carbon 50 2119

    Article  Google Scholar 

  3. Dang T M D, Le T T T, Fribourg-Blanc E and Dang M C 2011 Adv. Nat. Sci. Nanosci. Nanotechnol. 2 025004

    Article  Google Scholar 

  4. Wen Y, Huang W, Wang B, Fan J, Gao Z and Yin L 2012 Mater. Sci. Eng. B 177 619

    Article  Google Scholar 

  5. Liu Q M, Zhou D B, Yamamoto Y, Ichino R and Okido M 2012 Trans. Nonferrous Met. Soc. China 22 117

    Article  Google Scholar 

  6. Jin M, He G, Zhang H, Zeng J, Xie Z and Xia Y 2011 Ang. Chem. Int. Ed. 50 10560

    Article  Google Scholar 

  7. Kaur R, Giordano C, Gradzielski M and Mehta S K 2014 Chem. Asian J. 9 189

    Article  Google Scholar 

  8. Magdassi S, Grouchko M and Kamyshny A 2010 Materials 3 4626

    Article  Google Scholar 

  9. de Godoi F C, Rabelo R B, Vasconcellos F C and Beppu M M Proceedings of Icheap-10, the 10th international conference on chemical and process engineering p 217

  10. Dang T M D, Le T T T, Fribourg-Blanc E and Dang M C 2011 Adv. Nat. Sci. Nanosci. Nanotechnol. 2 015009

    Google Scholar 

  11. Lisiecki I, Björling M, Motte L, Ninham B and Pileni M 1995 Langmuir 11 2385

    Article  Google Scholar 

  12. Yeh M S, Yang Y S, Lee Y P, Lee H F, Yeh Y H and Yeh C S 1999 J. Phys. Chem. B 103 6851

    Article  Google Scholar 

  13. Qi L, Ma J and Shen J 1997 J. Colloid Interface Sci. 186 498

    Article  Google Scholar 

  14. Lisiecki I, Billoudet F and Pileni M 1997 J. Mol. Liq. 72 251

    Article  Google Scholar 

  15. Yagi S, Nakanishi H, Matsubara E, Matsubara S, Ichitsubo T, Hosoya K et al 2008 J. Electrochem. Soc. 155 D474

    Article  Google Scholar 

  16. Dhas N A, Raj C P and Gedanken A 1998 Chem. Mater. 10 1446

    Article  Google Scholar 

  17. Athawale A A, Katre P P, Kumar M and Majumdar M B 2005 Mater. Chem. Phys. 91 507

    Article  Google Scholar 

  18. Chen L, Zhang D, Chen J, Zhou H and Wan H 2006 Mater. Sci. Eng. A 415 156

    Article  Google Scholar 

  19. Chen S and Sommers J M 2001 J. Phys. Chem. B 105 8816

    Article  Google Scholar 

  20. Kumar S A, Meenakshi K S, Narashimhan B, Srikanth S and Arthanareeswaran G 2009 Mater. Chem. Phys. 113 57

    Article  Google Scholar 

  21. Wen Y L, Huang W and Wang B 2011 Mater. Sci. Forum 663–665 906

  22. Liu Q M, Yasunami T, Kuruda K and Okido M 2012 Trans. Nonferrous Met. Soc. China 22 2198

    Article  Google Scholar 

  23. Kanninen P, Johans C, Merta J and Kontturi K 2008 J. Colloid Interface Sci. 318 88

    Article  Google Scholar 

  24. Wu C, Mosher B P and Zeng T 2006 J. Nanopart. Res. 8 965

    Article  Google Scholar 

  25. Park B K, Jeong S, Kim D, Moon J, Lim S and Kim J S 2007 J. Colloid Interface Sci. 311 417

    Article  Google Scholar 

  26. Sarkar A, Mukherjee T and Kapoor S 2008 J. Phys. Chem. C 112 3334

    Article  Google Scholar 

  27. Surmawar N V, Thakare S R and Khaty N 2011 Int. J. Green Nanotechnol. 3 302

    Article  Google Scholar 

  28. Santhanalakshmi J and Parimala L 2012 J. Nanopart. Res. 14 1

  29. Gholinejad M, Saadati F, Shaybanizadeh S and Pullithadathil B 2016 RSC Adv. 6 4983

    Article  Google Scholar 

  30. Chen J, Spear S K, Huddleston J G and Rogers R D 2005 Green Chem. 7 64

    Article  Google Scholar 

  31. Shameli K, Bin Ahmad M, Jazayeri S D, Sedaghat S, Shabanzadeh P, Jahangirian H et al 2012 Int. J. Mol. Sci. 13 6639

    Article  Google Scholar 

  32. Mondal D, Mollick M M R, Bhowmick B, Maity D, Bain M K, Rana D et al 2013 Prog. Nat. Sci. Mater. Int. 23 579

    Article  Google Scholar 

  33. Sampath M, Vijayan R, Tamilarasu E, Tamilselvan A and Sengottuvelan B 2014 J. Nanotechnol. 2014 1

  34. Theivasanthi T and Alagar M 2010 X-ray diffraction studies of copper nanopowder arXiv preprint 10036068

  35. Nasirian A 2012 Int. J. Nano Dimens. 2 159

    Google Scholar 

  36. Mallick K, Witcomb M J and Scurrell M S 2006 Eur. Polym. J. 42 670

    Article  Google Scholar 

  37. Soomro R A, Sherazi S H, Memon N, Shah M, Kalwar N, Hallam K R et al 2014 Adv. Mater. Lett. 5 191

    Article  Google Scholar 

  38. Khanna P, Gaikwad S, Adhyapak P, Singh N and Marimuthu R 2007 Mater. Lett. 61 4711

    Article  Google Scholar 

  39. Jain S, Jain A and Devra V 2014 Int. J. Sci. Eng. Res. 5 973

  40. Zhang Q L, Yang Z M, Ding B J, Lan X Z and Guo Y J 2010 Trans. Nonferrous Met. Soc. China 20 s240

    Article  Google Scholar 

  41. Khan A, Rashid A, Younas R and Chong R 2016 Int. Nano Lett. 6 21

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of this research by the University of Tabriz is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Olad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olad, A., Alipour, M. & Nosrati, R. The use of biodegradable polymers for the stabilization of copper nanoparticles synthesized by chemical reduction method. Bull Mater Sci 40, 1013–1020 (2017). https://doi.org/10.1007/s12034-017-1432-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1432-y

Keywords

Navigation