Skip to main content
Log in

Dependency of annealing behaviour on grain size in Al–TiC composite produced by accumulative roll bonding

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This work investigates the effect of grain size on annealing behaviour in both coarse-grained and ultrafine-grained Al–TiC composite processed by accumulative roll bonding (ARB). Microstructural analysis indicates that annealing behaviour of the specimens are essentially determined by the level of strain accumulation or number of ARB cycles, i.e., recrystallization phenomenon are accelerated by increasing the level of strain accumulation or number of ARB cycles. Microstructure analysis illustrates that annealing treatment at 200 or \(250{^{\circ }}\hbox {C}\) for the 1-cycle ARB-processed Al–TiC composite having coarse grains does not lead to the recrystallization phenomenon, indicating that only recovery appears. In contrast, partial recrystallization occurred after annealing at \(250{^{\circ }}\hbox {C}\) in the 7-cycle ARB-processed Al–TiC composite having ultrafine grains. Furthermore, annealing treatment significantly enhanced elongation for both ultrafine as well as coarse-grained Al–TiC composites in spite of the fact that yield and ultimate strength decreased during annealing treatment. The results proved that yield strength and tensile strengths for both 1-cycle and 7-cycle ARB-processed Al–TiC composites gradually decreased by annealing treatments between 200 and \(300{^{\circ }}\hbox {C}\). In contrast, ultimate elongation drastically improved by about 100% after annealing at the aforementioned conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ibrahim I, Mohamed F and Lavernia E 1991 J. Mater. Sci. 26 1137

    Article  Google Scholar 

  2. Mortensen A 1991 Mater. Sci. Eng. A 135 1

    Article  Google Scholar 

  3. Banks-Sills L, Leiderman V and Fang D 1997 Composites Part B: Eng. 28 465

    Article  Google Scholar 

  4. Karantzalis A, Wyatt S and Kennedy A 1997 Mater. Sci. Eng. A 237 200

    Article  Google Scholar 

  5. Manoharan M and Gupta M 1999 Composites Part B: Eng. 30 107

    Article  Google Scholar 

  6. Cantor B, Dunne F P and Stone I C 2010 Metal and ceramic matrix composites (FL, USA: CRC Press)

  7. Yazdani A, Salahinejad E, Moradgholi J and Hosseini M 2011 J. Alloys Compd. 509 9562

    Article  Google Scholar 

  8. Nair S, Tien J and Bates R 1985 Int. Met. Rev. 30 275

    Article  Google Scholar 

  9. Turnbull A 1992 Br. Corros. J. 27 27

    Article  Google Scholar 

  10. Alizadeh M and Paydar M 2010 J. Alloys Compd. 492 231

    Article  Google Scholar 

  11. Salimi S, Izadi H and Gerlich A 2011 J. Mater. Sci. 46 409

    Article  Google Scholar 

  12. Alizadeh M, Paydar M, Terada D and Tsuji N 2012 Mater. Sci. Eng. A 540 13

    Article  Google Scholar 

  13. Alizadeh M, Paydar M and Sharifian Jazi F 2013 Composites Part B: Eng. 44 339

    Article  Google Scholar 

  14. Alizadeh M, Ghaffari M and Amini R 2014 Composites Part B: Eng. 58 438

    Article  Google Scholar 

  15. Reihanian M, Hadadian F K and Paydar M 2014 Mater. Sci. Eng. A 607 188

    Article  Google Scholar 

  16. Valiev R Z, Korznikov A and Mulyukov R 1993 Mater. Sci. Eng. A 168 141

    Article  Google Scholar 

  17. Valiev R, Korznikov A and Mulyukov R 1993 Mater. Sci. Eng. A 168 141

    Article  Google Scholar 

  18. Valiev R Z 1997 Mater. Sci. Eng. A 234 59

    Article  Google Scholar 

  19. Tsuji N, Ito Y, Saito Y and Minamino Y 2002 Scr. Mater. 47 893

    Article  Google Scholar 

  20. Jafarian H and Eivani A 2014 J. Mater. Sci. 49 6570

    Article  Google Scholar 

  21. Iwahashi Y, Wang J, Horita Z, Nemoto M and Langdon T G 1996 Scr. Mater. 35 143

    Article  Google Scholar 

  22. Zhilyaev A P and Langdon T G 2008 Prog. Mater. Sci. 53 893

    Article  Google Scholar 

  23. Saito Y, Utsunomiya H, Tsuji N and Sakai T 1999 Acta Mater. 47 579

  24. Rezayat M, Akbarzadeh A and Owhadi A 2012 Metall. Mater. Trans. A 43 2085

    Article  Google Scholar 

  25. Jamaati R, Toroghinejad M R, Dutkiewicz J and Szpunar J A 2012 Mater. Des. 35 37

    Article  Google Scholar 

  26. Dehkordi H F, Toroghinejad M R and Raeissi K 2013 Mater. Sci. Eng. A: Struct. Mater.: Properties Microstruct. Process. 585 460

    Article  Google Scholar 

  27. Jamaati R, Naseri M and Toroghinejad M R 2014 Mater. Des. 59 540

    Article  Google Scholar 

  28. Mehr V Y, Rezaeian A and Toroghinejad M R 2015 Mater. Des.

  29. Jafarian H, Habibi-Livar J and Razavi S H 2015 Composites Part B: Eng. 77 84

    Article  Google Scholar 

  30. Ma E 2003 Scr. Mater. 49 663

    Article  Google Scholar 

  31. Koch C 2003 Scr. Mater. 49 657

    Article  Google Scholar 

  32. Hughes D and Hansen N 1997 Acta Mater. 45 3871

    Article  Google Scholar 

  33. Park K-T, Kwon H-J, Kim W-J and Kim Y S 2001 Mater. Sci. Eng. A 316 145

    Article  Google Scholar 

  34. Kamikawa N, Tsuji N, Huang X and Hansen N 2006 Acta Mater. 54 3055

    Article  Google Scholar 

  35. Humphreys F 1977 Acta Metall. 25 1323

    Article  Google Scholar 

  36. Rollett A, Humphreys F, Rohrer G S and Hatherly M 2004 Recrystallization and related annealing phenomena (Amsterdam, The Netherlands: Elsevier)

  37. Kassner M E, McQueen H J, Pollard J, Evangelista E and Cerri E 1994 Scr. Metall. Mater. 31 1331

    Article  Google Scholar 

  38. Chekhonin P et al 2012 Acta Mater. 60 4661

    Article  Google Scholar 

  39. Dieter G E 2015 Mechanical metallurgy 3rd edn (New York: McGraw-Hill)

Download references

Acknowledgements

This study was financially supported by the Grant-in-Aid through Iran National Science Foundation (INSF), Iran (Contract No. 91002129), and the support is gratefully appreciated. We are also really thankful to Prof. Nobuhiro Tsuji, Kyoto University, for fruitful discussion and providing EBSD analysis equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Jafarian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarian, H.R., Habibi-Livar, J. Dependency of annealing behaviour on grain size in Al–TiC composite produced by accumulative roll bonding. Bull Mater Sci 40, 583–590 (2017). https://doi.org/10.1007/s12034-017-1407-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1407-z

Keywords

Navigation