Skip to main content

Advertisement

Log in

Anatase–CMK-3 nanocomposite development for hydrogen uptake and storage

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The nanometric carbon CMK-3 modified with TiO2 in anatase phase was synthesized and applied to energy uptake and storage. TiO2 nanoclusters are important for hydrogen energy harvesting. The creation of porous structures or large surface with TiO2 nanoclusters inside can potentially face the challenge of improving their efficiency. In the present work, we report the synthesis and characterization of TiO2–CMK-3 material assembled from anatase nanoparticles dispersed in the nanometric carbon CMK-3. The resulting nanocomposite was characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy and N2 adsorption–desorption analysis. The newly synthesized hybrid composites exhibited significantly enhanced H2 storage, in which CMK-3-ordered porous carbon modified with anatase nanoclusters proved to be a material for hydrogen uptake. The nanoparticles of anatase (5 nm) incorporated onto CMK-3 showed higher hydrogen uptake at low and high pressures (2.9 wt% of H2 sorption at 10 bar and 77 K) than CMK-3. The approach includes a discussion of H2 adsorption process and storage properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Gadiou R, Saadallah S E, Piquero T, David P, Parmentier J and Guterl C V 2005 Micropor. Mesopor. Mater. 79 121

    Article  Google Scholar 

  2. Fang B Z, Zhou H S and Honma I 2006 J. Phys. Chem. B 110 4875

    Article  Google Scholar 

  3. Guterl C V, Frackowiak E, Jurewicz K, Friebe M, Parmentier J and Béguin F 2005 Carbon 43 1293

    Article  Google Scholar 

  4. Yang Z X, Xia Y D, Sun X Z and Mokaya R 2006 J. Phys. Chem. B 110 18424

    Article  Google Scholar 

  5. Saha D and Deng S 2009 Int. J. Hydrogen Energy 34 2670

    Article  Google Scholar 

  6. Schlapbach L and Züttel A 2001 Nature 414 353

    Article  Google Scholar 

  7. Kajiura H, Tsutsui S, Kadono K, Kakuta M, Ata M and Murakami Y 2003 Appl. Phys. Lett. 82 1105

    Article  Google Scholar 

  8. Mandoki N T, Dentzer J, Piquero T, Saadallah S, David P and Guterl C V 2004 Carbon 42 2744

    Article  Google Scholar 

  9. Züttel A, Sudan P, Mauron P, Kiyobayashi T, Emmenegger C and Schlapbach L 2002 Int. J. Hydrogen Energy 27 203

    Article  Google Scholar 

  10. Yang H and Zhao D 2005 J. Mater. Chem. 15 1217

    Google Scholar 

  11. Anbia M and Ghaffari A 2009 Appl. Surf. Sci. 255 9487

    Article  Google Scholar 

  12. Anbia M and Parvin Z 2011 Chem. Eng. Res. Des. 89 641

    Article  Google Scholar 

  13. Xia K, Gao Q, Wu C, Song S and Ruan M 2007 Carbon 45 1989

    Article  Google Scholar 

  14. Kim N, Yeong Cheon J, Hyung Kim J, Seong J, Park J, Joo S and Kwon K 2014 Carbon 72 354

    Article  Google Scholar 

  15. Juárez J M, Gómez Costa M B and Anunziata O A 2015 , Int. J. Energy Res. 39 128

    Article  Google Scholar 

  16. Juárez J M, Gómez Costa M B and Anunziata O A 2015 , Int. J. Energy Res. 39 941

    Article  Google Scholar 

  17. Fujishima A, Rao T N and Tryk D A 2000 J. Photochem. Photobiol. C 1 1

    Article  Google Scholar 

  18. Fujishima A and Zhang X T 2006 C. R. Chim. 9 750

    Article  Google Scholar 

  19. Nasirian S and Milani Moghaddam H 2014 Int. J. Hydrogen Energy 39 630

    Article  Google Scholar 

  20. Paronyan T M, Kechiantz A M and Lin M C 2008 Nanotechnology 19 1

    Article  Google Scholar 

  21. Lin H, Huang C P, Li W, Ni C, Shah S I and Tseng Y H 2006 Appl. Catal. B 68 1

    Article  Google Scholar 

  22. Ji B J, Lee I and Dahl M 2013 Adv. Funct. Mater. 23 4246

    Article  Google Scholar 

  23. Edward C J W, Nakita N, Sivaram V, Tomas L, Alexander J and Snaith H J 2013 Nature 495 215

    Article  Google Scholar 

  24. Renuka N K, Praveen A K and Aravindakshan K K 2013 Mater. Lett. 91 118

    Article  Google Scholar 

  25. Liu B, Xiao J, Xu L, Yao Y, Costa B F O, Domingos V F, Ribeiro E S, Shi F -N, Zhou K, Su J, Wu H, Zhong K, Paixâo J A and Gil J M 2015 Int. J. Hydrogen Energy 40 4945

    Article  Google Scholar 

  26. Chu S, Hu L, Hu X, Yang M and Deng J 2011 Int. J. Hydrogen Energy 36 12324

    Article  Google Scholar 

  27. Shalabi A S, Taha H O, Soliman K A and Abeld S 2014 , J. Power Sources 271 32

    Article  Google Scholar 

  28. Meynen V, Cool P and Vansant E F 2009 Micropor. Mesopor. Mater. 125 170

    Article  Google Scholar 

  29. Yang H and Zhao D 2005 J. Mater. Chem. 15 1217

    Google Scholar 

  30. Suryavanshi U, Iijima T, Hayashia A, Hayashi Y and Tanemura M 2012 Chem. Eng. J. 179 388

    Article  Google Scholar 

  31. Khitrova V I, Bundule M F and Pinsker Z G 1977 Kristallografiya 22 1253 (Calculated from ICSD using POWD-12 + + 1997)

    Google Scholar 

  32. Gómez Costa M B, Juárez J M, Martínez M L, Beltramone A R, Cussa J and Anunziata O A 2013 Mater. Res. Bull. 48 661

    Article  Google Scholar 

  33. Veena Gopalan E, Malini K A, Santhoshkumar G, Narayanan T N, Joy P A, Al-Omari I A, Sakthi Kumar D, Yoshida Y and Anantharaman M R 2010 Nanoscale Res. Lett. 5 889

    Article  Google Scholar 

  34. Langford J I and Wilson A J C 1978 J. Appl. Crystallogr. 11 102

    Article  Google Scholar 

  35. Dutoit D C M, Schneider M, Hutter R and Baiker A 1996 , J. Catal. 161 651

    Article  Google Scholar 

  36. Atuchin V V, Kesler V G, Pervukhina N V and Zhang Z 2006 J. Electron. Spectrosc. Relat. Phenom. 152 18

    Article  Google Scholar 

  37. Lezanska M, Pietrzyk O and Sojka Z 2010 J. Phys. Chem. C 114 1208

    Article  Google Scholar 

  38. Bassi A L, Cattaneo D, Russo V, Bottani C E, Barborini E, Mazza T, Piseri P, Milani P, Ernst F O, Wegner K and Pratsinis S E J 2005 J. Appl. Phys. 98 74305

    Article  Google Scholar 

  39. Balaji S, Djaoued Y and Robichaud J 2006 J. Raman Spectrosc. 37 1416

    Article  Google Scholar 

  40. Mazza T, Barborini E, Piseri P, Milani P, Cattaneo D, Bassi A L, Bottani C E and Ducati C 2007 Phys. Rev. B: Condens. Matter 75 045416

    Article  Google Scholar 

  41. Dresselhaus M S, Jorio A, Hofmann M, Dresselhaus G and Saito R 2010 Nano Lett. 10 751

    Article  Google Scholar 

  42. Lu J, Yang J, Wang J, Lim A, Wang S and Loh K P 2009 ACS Nano 3 2367

    Article  Google Scholar 

  43. Zhang W, Cui J, Tao C, Wu Y, Li Z, Ma L, Wen Y and Li G 2009 Angew. Chem. 121 5978

    Article  Google Scholar 

  44. Tuinstra F and Koenig J L 1970 J. Chem. Phys. 53 1126

    Article  Google Scholar 

  45. Darmstadt H, Roy C, Kaliaguine S, Choi S J and Ryoo R 2002 Carbon 40 2673

    Article  Google Scholar 

  46. Kim B -J and Park S -J 2011, Int. J. Hydrogen Energy 36 648

    Article  Google Scholar 

  47. Hoang Tuan K A and Antonelli David M 2009 Adv. Mater. 21 1787

    Article  Google Scholar 

  48. Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E and Batzill M 2014 Sci. Rep. 4 4043

    Article  Google Scholar 

  49. Zhang L P, Wu P and Sullivan M B 2011 J. Phys. Chem. B 115 4289

    Google Scholar 

  50. Takasu Y, Unwin R, Tesche B, Bradshaw A M and Grunze M 1978 Surf. Sci. 77 219

    Article  Google Scholar 

  51. Nguyen T Q, Bustria Padama A A, Sison Escano M C and Kasai H 2013 ECS Trans. 45 91

    Article  Google Scholar 

Download references

Acknowledgement

We thank CONICET, Argentina (PIP CONICET 112201201 00218CO, 2014–2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to OSCAR A ANUNZIATA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GÓMEZ COSTA, M.B., JUÁREZ, J.M., PECCHI, G. et al. Anatase–CMK-3 nanocomposite development for hydrogen uptake and storage. Bull Mater Sci 40, 271–280 (2017). https://doi.org/10.1007/s12034-017-1382-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1382-4

Keywords

Navigation