Skip to main content
Log in

Enhanced hydrogen storage performance of g-C3N4/CoMn2O4 nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work investigates the graphitic carbon nitride (g-C3N4) and g-C3N4/CoMn2O4 nanocomposites as potential materials for solid-state hydrogen storage applications. Initially, the CoMn2O4 was prepared by facile hydrothermal technique and g-C3N4 was synthesized via a one-step calcination process. The g-C3N4/CoMn2O4 composites were prepared through ultrasonic-assisted wet impregnation method and their physical and chemical properties were investigated systematically. Thermogravimetric analysis confirmed that the samples were thermally stable up to 500 °C. Hydrogenation studies were carried out at 150 °C for 30 min under 5 and 10 bar pressures. In the dehydrogenation process, the g-C3N4 desorbed 1.58 wt% and g-C3N4/CoMn2O4 650 nanocomposite desorbed 2.25 wt% of hydrogen from RT to 500 °C. The g-C3N4/CoMn2O4 650 shows lower desorption activation energy and binding energy (Ed = 15.81 kJ mol−1 & Eb = 0.252 eV) compared to g-C3N4 (Ed = 16.54 kJ mol−1 & Eb = 0.260 eV) respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. J. Rothstein, Int. J. Hydrogen Energy. 20, 283 (1995)

    CAS  Google Scholar 

  2. I.P. Jain, Int. J. Hydrogen Energy. 34, 7368 (2009)

    CAS  Google Scholar 

  3. N. Endo, K. Goshome, M. Tetsuhiko, Y. Segawa, E. Shimoda, T. Nozu, Int. J. Hydrogen Energy. 46, 262 (2021)

    CAS  Google Scholar 

  4. T.N. Veziroğlu, S. Şahi˙n, Energy Convers. Manag. 49, 1820 (2008)

    Google Scholar 

  5. L. Schlapbach, A. Züttel, Nature. 414, 353 (2001)

    ADS  CAS  PubMed  Google Scholar 

  6. A. Karmakar, R. Jayan, A. Das, A. Kalloorkal, M.M. Islam, S. Kundu, ACS Appl. Mater. Interfaces. 15, 26928 (2023)

    CAS  PubMed  Google Scholar 

  7. S. Nagappan, H.N. Dhandapani, A. Karmakar, S. Kundu, ES Mater. Manuf. 19, 1 (2021)

    Google Scholar 

  8. A. Karmakar, S. Nagappan, A. Das, A. Kalloorkal, S. Kundu, J. Mater. Chem. A 11, 15635 (2023)

    CAS  Google Scholar 

  9. S. Nagappan, S. Yang, A. Adhikari, R. Patel, S. Kundu, Sustain. Energy Fuels. 7, 3741 (2023)

    CAS  Google Scholar 

  10. R. Madhu, A. Karmakar, K. Bera, S. Nagappan, H.N. Dhandapani, A. De, S.S. Roy, S. Kundu, Mater. Chem. Front. 7, 2120 (2023)

    CAS  Google Scholar 

  11. C. Tarhan, M.A. Çil, J. Energy Storage. 40, 102676 (2021)

    Google Scholar 

  12. J.O. Abe, A.P.I. Popoola, E. Ajenifuja, O.M. Popoola, Int. J. Hydrogen Energy. 44, 15072 (2019)

    CAS  Google Scholar 

  13. J. Zheng, X. Liu, P. Xu, P. Liu, Y. Zhao, J. Yang, Int. J. Hydrogen Energy. 37, 1048 (2012)

    CAS  Google Scholar 

  14. E. Boateng, A. Chen, Mater. Today Adv. 6, 100022 (2020)

    Google Scholar 

  15. H.-J. Lin, H.-W. Li, H. Shao, Y. Lu, K. Asano, Mater. Today Energy. 17, 100463 (2020)

    Google Scholar 

  16. B. SAKINTUNA, F. LAMARIDARKRIM, M. HIRSCHER, Int. J. Hydrogen Energy. 32, 1121 (2007)

    CAS  Google Scholar 

  17. J. Andersson, S. Grönkvist, Int. J. Hydrogen Energy. 44, 11901 (2019)

    CAS  Google Scholar 

  18. A. Schneemann, J.L. White, S. Kang, S. Jeong, L.F. Wan, E.S. Cho, T.W. Heo, D. Prendergast, J.J. Urban, B.C. Wood, M.D. Allendorf, V. Stavila, Chem. Rev. 118, 10775 (2018)

    CAS  PubMed  Google Scholar 

  19. K. Alsabawi, E.M.A. Gray, C.J. Webb, Int. J. Hydrogen Energy. 44, 2976 (2019)

    CAS  Google Scholar 

  20. R. Zacharia, S.U. Rather, J. Nanomater.  2015, 6–6 (2015)

    Google Scholar 

  21. A.M. Seayad, D.M. Antonell, Adv. Mater. 16, 765 (2004)

    CAS  Google Scholar 

  22. A. Kaliyaperumal, L. Vellingiri, G. Periyasamy, K. Annamalai, J. Mater. Sci. Mater. Electron. 33, 9144 (2022)

    CAS  Google Scholar 

  23. A. Ahmed, Y. Liu, J. Purewal, L.D. Tran, A.G. Wong-Foy, M. Veenstra, A.J. Matzger, D.J. Siegel, Energy Environ. Sci. 10, 2459 (2017)

    CAS  Google Scholar 

  24. K.K. Gangu, S. Maddila, S.B. Mukkamala, S.B. Jonnalagadda, J. Energy Chem. 30, 132 (2019)

    Google Scholar 

  25. Y. Yürüm, A. Taralp, T.N. Veziroglu, Int. J. Hydrogen Energy. 34, 3784 (2009)

    Google Scholar 

  26. W.C. Xu, K. Takahashi, Y. Matsuo, Y. Hattori, M. Kumagai, S. Ishiyama, K. Kaneko, S. Iijima, Int. J. Hydrogen Energy. 32, 2504 (2007)

    CAS  Google Scholar 

  27. D. Silambarasan, V.J. Surya, V. Vasu, K. Iyakutti, ACS Appl. Mater. Interfaces. 5, 11419 (2013)

    CAS  PubMed  Google Scholar 

  28. S. Kaskun, M. Kayfeci, Int. J. Hydrogen Energy. 43, 10773 (2018)

    CAS  Google Scholar 

  29. M. Mohan, V.K. Sharma, E.A. Kumar, V. Gayathri, Energy Storage. 1, e35 (2019)

    CAS  Google Scholar 

  30. J.Y. Hwang, S.H. Lee, K.S. Sim, J.W. Kim, Synth. Met. 126, 81 (2002)

    CAS  Google Scholar 

  31. A.G. Klechikov, G. Mercier, P. Merino, S. Blanco, C. Merino, A.V. Talyzin, Microporous Mesoporous Mater. 210, 46 (2015)

    CAS  Google Scholar 

  32. A. Klechikov, G. Mercier, T. Sharifi, I.A. Baburin, G. Seifert, A.V. Talyzin, Chem. Commun. 51, 15280 (2015)

    CAS  Google Scholar 

  33. T. Ramesh, N. Rajalakshmi, K.S. Dhathathreyan, J. Energy Storage. 4, 89 (2015)

    Google Scholar 

  34. I. Rossetti, G. Ramis, A. Gallo, A. Di Michele, Int. J. Hydrogen Energy. 40, 7609 (2015)

    CAS  Google Scholar 

  35. R. Guo, Y.S. Tseng, I. Retita, G. Bahmanrokh, B. Arkhurst, S.L.I. Chan, Mater. Today Chem. 30, 101508 (2023)

    CAS  Google Scholar 

  36. P. Panigrahi, A. Kumar, A. Karton, R. Ahuja, T. Hussain, Int. J. Hydrogen Energy. 45, 3035 (2020)

    CAS  Google Scholar 

  37. S.J. Mahdizadeh, E.K. Goharshadi, Int. J. Hydrogen Energy. 44, 8325 (2019)

    CAS  Google Scholar 

  38. V.B. Parambhath, R. Nagar, K. Sethupathi, S. Ramaprabhu, J. Phys. Chem. C 115, 15679 (2011)

    CAS  Google Scholar 

  39. E. Klontzas, E. Tylianakis, G.E. Froudakis, J. Phys. Chem. Lett. 2, 1824 (2011)

    CAS  Google Scholar 

  40. B.P. Vinayan, S. Ramaprabhu, Nano Commun. 1, 4 (2014)

    Google Scholar 

  41. B.P. Vinayan, K. Sethupathi, S. Ramaprabhu, J. Nanosci. Nanotechnol. 12, 6608 (2012)

    CAS  PubMed  Google Scholar 

  42. C.N. Nanotubes, 0 (2022)

  43. A.A.S. Nair, R. Sundara, N. Anitha, Int. J. Hydrogen Energy. 40, 3259 (2015)

    CAS  Google Scholar 

  44. S.E. Moradi, Chem. Biochem. Eng. Q. J. 28, 267 (2014)

    CAS  Google Scholar 

  45. L. Vellingiri, K. Annamalai, R. Kandasamy, I. Kombiah, Int. J. Hydrogen Energy. 43, 10396 (2018)

    CAS  Google Scholar 

  46. R.A. Sharath, F. Fang, J. Futter, W.J. Trompetter, G. Singh, A. Vinu, J. Kennedy, Emergent Mater. 6, 1117 (2023)

    CAS  Google Scholar 

  47. J. Bhagwan, B.N.V. Krishna, J.S. Yu, Int. J. Energy Res. 45, 19413 (2021)

    CAS  Google Scholar 

  48. K.-N. Jung, S.M. Hwang, M.-S. Park, K.J. Kim, J.-G. Kim, S.X. Dou, J.H. Kim, J.-W. Lee, Sci. Rep. 5, 7665 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. A.A.S. Nair, R. Sundara, J. Phys. Chem. C 120, 9612 (2016)

    CAS  Google Scholar 

  50. S. Rostami, A.N. Pour, M. Izadyar, J. Nanostruct. 9, 498 (2019)

    CAS  Google Scholar 

  51. R. Kumar, M.A. Barakat, F.A. Alseroury, Sci. Rep. 7, 12850 (2017)

    ADS  PubMed  PubMed Central  Google Scholar 

  52. A. Alaghmandfard, K. Ghandi, Nanomaterials. 12, 294 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  53. S.A. Hosseini, D. Salari, A. Niaei, F. Deganello, G. Pantaleo, P. Hojati, J. Environ. Sci. Heal Part. A 46, 291 (2011)

    CAS  Google Scholar 

  54. J. Cao, C. Qin, Y. Wang, H. Zhang, G. Sun, Z. Zhang, Mater. (Basel). 10, 604 (2017)

    ADS  Google Scholar 

  55. X. Wei, C. Shao, X. Li, N. Lu, K. Wang, Z. Zhang, Y. Liu, Nanoscale. 8, 11034 (2016)

    ADS  CAS  PubMed  Google Scholar 

  56. Z. Zhang, K. Liu, Z. Feng, Y. Bao, B. Dong, Sci. Rep. 6, 19221 (2016)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. H. Wang, B. Wang, Y. Bian, L. Dai, ACS Appl. Mater. Interfaces. 9, 21730 (2017)

    CAS  PubMed  Google Scholar 

  58. R.K.N. Kutty, P.R. Kasturi, J. Jaganath, S. Padmanapan, Y.S. Lee, D. Meyrick, R.K. Selvan, J. Mater. Sci. Mater. Electron. 30, 975 (2019)

    CAS  Google Scholar 

  59. J. Li, S. Xiong, X. Li, Y. Qian, Nanoscale. 5, 2045 (2013)

    ADS  CAS  PubMed  Google Scholar 

  60. X. Huang, L. Liu, H. Gao, W. Dong, M. Yang, G. Wang, Green. Chem. 19, 769 (2017)

    CAS  Google Scholar 

  61. J. Zheng, Y. Hu, L. Zhang, Phys. Chem. Chem. Phys. 19, 25044 (2017)

    CAS  PubMed  Google Scholar 

  62. W. Zhao, Q. Zhong, J. Ding, Z. Deng, L. Guo, F. Song, RSC Adv. 6, 115213 (2016)

    ADS  CAS  Google Scholar 

  63. W. Zhao, Z. Yan, L. Qian, Eng. Sci. 10, 24 (2020)

    CAS  Google Scholar 

  64. M. Alhaddad, R.M. Mohamed, M.H.H. Mahmoud, ACS Omega. 6, 8717 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the department of Physics and Nanotechnology, SRM IST for their experimental facility to carry out the research. The authors also thank to the NRC and SCIF SRM IST for providing their characterization facilities.

Funding

No funding was received to conduct this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Materials preparation, data collection and analysis were performed by GP, AK and RR. The first draft of the manuscript was written by GP and all other authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Gokuladeepan Periyasamy or Karthigeyan Annamalai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest associated with this publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2323.3 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Periyasamy, G., Kaliyaperumal, A., Ramachandran, R. et al. Enhanced hydrogen storage performance of g-C3N4/CoMn2O4 nanocomposites. J Mater Sci: Mater Electron 35, 404 (2024). https://doi.org/10.1007/s10854-024-12200-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12200-8

Navigation