Skip to main content
Log in

Mechanical and morphological investigation of virgin polyethylene and silver nanoparticle-loaded nanocomposites film: comprehensive analysis of kinetic models for non-isothermal crystallization

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This research was accomplished to examine the mechanical, morphological and crystallization kinetics study of polyethylene/silver nanoparticles (Ag-NPs) nanocomposite films. In this research, low-density polyethylene (LDPE) nanocomposite films were prepared containing Ag-NPs using maleic-anhydride-grafted low-density polyethylene (LDPE-g-MAH) as a compatibilizer by the melt mixing process. From mechanical property evaluation, it is revealed that the LDPE/LDPE-g-MAH/Ag-NPs nanocomposite films showed decreased tensile strength as compared with virgin LDPE matrix. Thermal characteristics of the prepared virgin LDPE and its nanocomposite films were studied by differential scanning calorimetry (DSC). Comprehensive analysis of different kinetic models such as the Avrami and Mo model on non-isothermal crystallization kinetics was performed in order to correlate the rate of crystallization and its various kinetic parameters. Further, the macrokinetic equation as proposed by Malkin has been applied to describe the kinetics of crystallization in the light of the Avrami equation. Concerning virgin LDPE and Ag-NP-reinforced LDPE, the former shows primary crystallization, whereas the later exhibits both primary and secondary crystallization with varying Avrami exponents. Kinetic parameters are recognized, and confirm the influence of Ag-NPs on crystallization kinetics. X-ray diffraction spectroscopy and transmission electron microscopic analysis of the nanocomposite films were conducted to verify the dispersion of inorganic filler particles in the resulting hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  1. Bastarrachea L, Dhawan S and Sablani S S 2011 Food Eng. Rev. 3 79

    Article  Google Scholar 

  2. Jokar M, Rahman R A, Ibrahim N A, Abdullah L C and Tan C P 2012 Food Bioprocess Technol. 5 719

    Article  Google Scholar 

  3. Hsu C C, Geil P H, Miyaji H and Asai K 1986 J. Polym. Sci. Part B:Polym. Phys. 24 2379

    Article  Google Scholar 

  4. Zhang X M, Elkoun S, Ajji A and Huneault M A 2004 Polymer 45 217

    Article  Google Scholar 

  5. Kaiser E J, Mcgrath J J and Bénard A 2000 J. Appl. Polym. Sci. 76 1516

    Article  Google Scholar 

  6. Liu T, Mo Z, Wang S and Zhang H 1997 Polym. Eng. Sci. 37 568

    Article  Google Scholar 

  7. Avalos F, Lopez-Manchado M A and Arroyo M 1996 Polymer 37 5681

    Article  Google Scholar 

  8. Avrami M 1939 J. Chem. Phys. 7 1103

    Article  Google Scholar 

  9. Avrami M 1939 J. Chem. Phys. 8 212

    Article  Google Scholar 

  10. Avrami M 1939 J. Chem. Phys. 9 177

    Article  Google Scholar 

  11. Ozawa T 1971 Polymer 12 150

    Article  Google Scholar 

  12. Tobin M C 1974 J. Polym. Sci.:Polym. Phys. 12 399

    Google Scholar 

  13. Tobin M C 1974 J. Polym. Sci.:Polym. Phys. 14 2253

    Google Scholar 

  14. Tobin M C 1974 J. Polym. Sci.:Polym. Phys. 15 2269

    Google Scholar 

  15. Malkin A Y, Beghishev V P and Keapin I A 1983 Polymer 24 81

    Article  Google Scholar 

  16. Malkin A Y, Beghishev V P, Keapin I A and Bolgov S A 1984 J. Polym. Eng. Sci. 24 1396

    Article  Google Scholar 

  17. Mubarak Y, Harkin-Jones E M A, Martin P J and Ahmad M 2001 Polymer 42 3171

    Article  Google Scholar 

  18. Supaphol P 2001 Thermochim. Acta 370 37

    Article  Google Scholar 

  19. Zhang Z, Xiao C and Dong Z 2007 Thermochim. Acta 466 22

    Article  Google Scholar 

  20. Wu H, Liang M and Lu C 2012 Thermochim. Acta 545 148

    Article  Google Scholar 

  21. Wang S and Zhang J 2014 J. Therm. Anal. Calorim. 115 63

    Article  Google Scholar 

  22. Malkin A Y, Beghishev V P and Bolgov S A 1982 Polymer 23 385

    Article  Google Scholar 

  23. Zhishen M O 2008 Acta Polym. Sin. 7 656

    Google Scholar 

  24. Zhang Z 1993 Chin. J. Polym. Sci. 11 125

    Google Scholar 

  25. Johnson W A and Mehl K F 1939 Trans., Am. Inst. Mining Met. Eng. 135 416

    Google Scholar 

  26. Supaphol P and Spruiell J E 2001 Polymer 42 699

    Article  Google Scholar 

  27. Wunderlich B 1976 Macromolecular physics (New York: Academic Press)

    Google Scholar 

  28. Pérez-Ćardenas F C, Castillo L and Vera-Graziano R 1991 J. Appl. Polym. Sci. 43 779

    Article  Google Scholar 

  29. Malkin A Y, Bolgov S A, Begishev V P and Mazalov O S 1991 J. Eng. Phys. 61 1092

    Article  Google Scholar 

  30. Mandelkern L 1964 Crystallization of polymers (New York: McGraw Hill)

    Google Scholar 

  31. Azlin-Hasim S, Cruz-Romero M C, Morris M A, Cummins E and Kerry J P 2015 Food Pack. Shelf Life 4 26

    Article  Google Scholar 

  32. Pongnop W, Sombatsompop K, Kositchaiyong A and Sombatsompop N 2011 J. Appl. Poly. Sci. 122 3456

    Article  Google Scholar 

  33. Hanemann T and Szabó D V 2010 Materials 3 3468

    Article  Google Scholar 

  34. Tjong S C and Bao S 2007 e-Polymers 7 1618

    Google Scholar 

  35. Pant B, Pant H R, Pandeya D R, Panthi G, Nam K T, Hong S T and Kim H Y 2012 Colloids Surf. A:Physicochem., Eng. Aspects 395 94

    Article  Google Scholar 

  36. Lee J M, Kim D W, Jun Y D and Oh S G 2006 Mater. Res. Bull. 41 1407

    Article  Google Scholar 

  37. Kamal M R and Chu E 1983 Polym. Eng. Sci. 23 27

    Article  Google Scholar 

  38. Abareshi M, Zebarjad S M and Goharshadi E K 2014 Bull. Mater. Sci. 37 1113

    Article  Google Scholar 

  39. Zhu X L, Wang C S, Wang B and Wang H P 2008 Iran Polym. J. 17 297

    Google Scholar 

  40. Salah H B H, Daly H B, Perrin F and Denault J 2011 Sci., Eng. Compos. Mater. 18 173

    Google Scholar 

  41. Zapata P A, Tamayo L, Páez M, Cerda E, Azócar I and Rabagliati F M 2011 Eur. Polym. J. 47 1541

    Article  Google Scholar 

Download references

Acknowledgement

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RAJESH KUMAR SAHOO.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SAHOO, R.K., PANDA, B.P., NAYAK, S.K. et al. Mechanical and morphological investigation of virgin polyethylene and silver nanoparticle-loaded nanocomposites film: comprehensive analysis of kinetic models for non-isothermal crystallization. Bull Mater Sci 40, 307–320 (2017). https://doi.org/10.1007/s12034-017-1370-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1370-8

Keywords

Navigation