Skip to main content
Log in

Melt Production and Antimicrobial Efficiency of Low-Density Polyethylene (LDPE)-Silver Nanocomposite Film

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Colloidal silver nanoparticles with a size of 5.5 ± 1.1 nm were prepared by chemical reduction using polyethylene glycol (PEG). Silver nanoparticles were incorporated into low-density polyethylene (LDPE) by melt blending and subsequent hot pressing at 140 °C to produce nanocomposite film with an average thickness of 0.7 mm. PEG was added at 5% weight of polymer as a compatibilizer agent in order to prevent agglomeration and provide uniform distribution of nanoparticles in polymer matrix. Antimicrobial activity of silver nanocomposites against Escherichia coli ATCC 13706, Staphylococcus aureus ATCC12600, and Candida albicans ATCC10231 was evaluated by semi-qualitative agar diffusion test and quantitative dynamic shake flask test. Mechanical properties of nanocomposites were not significantly different from silver-free LDPE-containing PEG films (p > 0.05), and silver nanoparticles did not form chemical bonding with the polymer. LDPE-silver nanocomposite samples by more than 6.69 ppm silver nanoparticles showed considerable antimicrobial clear zone. LDPE-silver nanocomposite affected growth kinetic parameters of the examined bacteria and is more efficient on S. aureus than E. coli. Polyethylene-silver nanocomposites containing 22.64 ppm silver nanoparticles could reduce 57.8% growth rate and 23.3% maximum bacterial concentration and increase 35.8% lag time of S. aureus. This study shows the potential use of LDPE-silver nanocomposite as antimicrobial active film. Antimicrobial efficiency of silver nanocomposite depends on silver nanoparticles concentration; however, high level of silver nanoparticles may lead to weakening of mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies, 3, 113–126.

    Article  CAS  Google Scholar 

  • Bouwmeester, H., Dekkers, S., Noordam, M. Y., Hagens, W. I., Bulder, A. S., Heer, C., et al. (2009). Review of health safety aspects of nanotechnologies in food production. Regulatory Toxicology and Pharmacology, 53(1), 52–62.

    Article  CAS  Google Scholar 

  • Cho, K. H., Park, J. E., Osaka, T., & Park, S. G. (2005). The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta, 51, 956–960.

    Article  CAS  Google Scholar 

  • Damm, C., Munstedt, H., & Rosch, A. (2008). The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. Materials Chemistry and Physics, 108, 61–66.

    Article  CAS  Google Scholar 

  • Del Nobile, M. A., Conte, A., Buonocore, G. G., Incoronato, A. L., Massaro, A., & Panza, O. (2009). Active packaging by extrusion processing of recyclable and biodegradable polymers. Journal of Food Engineering, 93, 1–6. doi:10.1016/j.jfoodeng.2008.12.022.

    Article  Google Scholar 

  • Han, J. H. (2000). Antimicrobial food packaging. Food Technology, 54(3), 56–65.

    Google Scholar 

  • Han, J. H., & Floros, J. D. (1997). Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. Journal of Plastic Film and Sheeting, 13, 278–298.

    Google Scholar 

  • Han, J., Castell-Perez, M. E., & Moreira, R. G. (2007). The influence of electron beam irradiation of antimicrobial-coated LDPE/polyamide films on antimicrobial activity and film properties. LWT, 40, 1545–1554.

    Article  CAS  Google Scholar 

  • Hong, S. I., Park, J. D., & Kim, D. M. (2000). Antimicrobial and physical properties of food packaging films incorporated with some natural compounds. Food Science Biotechnology, 9(1), 38–42.

    Google Scholar 

  • Ishitani, T. (1995). Active packaging for food quality preservation in Japan. In P. Ackerman, M. Jägerstad, & T. Oglsson (Eds.), Food and food packaging materials—chemical interactions (pp. 177–188). Cambridge: The Royal Society of Chemistry.

    Google Scholar 

  • Jokar, M., Abdul Rahman, R., Ibrahim, N. Z., Chuah Abdullah, L., & Chin Ping, T. (2009). Characterization and biocompatibility properties of silver nanoparticles produced using short chain polyethylene glycol. Journal of Nano Research, 9, 29–37.

    Google Scholar 

  • Kim, J. S., Kuk, E., Nam Yu, K., Kim, J. H., Park, S. J., Lee, H. J., et al. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine, 3, 95–101.

    Article  CAS  Google Scholar 

  • Kwakye-Awuah, B., Williams, C., Kenward, M. A., & Redecka, I. (2008). Antimicrobial action and efficiency of silver-loaded. Journal of Applied Microbiology, 104(5), 1516–1524.

    Article  CAS  Google Scholar 

  • Lee, D. S., Hwang, Y. I., & Cho, S. H. (1998). Developing antimicrobial packaging film for curled lettuce and soybean sprouts. Food Science and Biotechnology, 7(2), 117–121.

    Google Scholar 

  • Liau, S., Read, D., Pugh, W., Furr, J., & Russell, A. (1997). Interaction of silver nitrate with readily identifiable groups :relationship to the antibacterial action of silver ions. Letters in Applied Microbiology, 25, 279–283.

    Article  CAS  Google Scholar 

  • Marsh, K., & Bugusu, B. (2007). Food packaging—roles, materials, and environmental issue. Journal of food science, 72(3), 39–55.

    Article  Google Scholar 

  • Mauriello, G., De Luca, E., La Storia, A., Villani, F., & Ercolini, D. (2005). Antimicrobial activity of a nisin-activated plastic film for food packaging. Letters in Applied Microbiology, 41, 464–469.

    Article  CAS  Google Scholar 

  • Nobile, M. A. D., Cannarsi, M., Altieri, C., Sinigaglia, M., Favia, P., Iacoviello, G., et al. (2004). Effect of Ag-containing Nano-composite active packaging system on survival of Alicyclobacillus acidoterrestris. Journal of Food Science, 9(8), 379–383.

    Article  Google Scholar 

  • Pehlivan, H., Balkose, D., Ulku, S., & Tihminlioglu, F. (2005). Characterization of pure and silver exchanged natural zeolite filled polypropylene composite films. Composite Science and Technology, 65, 2049–2058.

    Article  CAS  Google Scholar 

  • Popa, M., Pradell, T., Crespo, D., & Calderon-Moreno, J. M. (2007). Stable silver colloidal dispersions using short chain polyethylene glycol. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 303, 184–190.

    Article  CAS  Google Scholar 

  • Quintavalla, S., & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Scienc, 62, 73–380.

    Article  Google Scholar 

  • Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. Journal of Colloids and Interface Science, 275, 177–182.

    Article  CAS  Google Scholar 

  • Suppakul, P., Milts, J., Sonneveld, K., & Bigger, S. W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its application. Journal of Food Science, 68, 408–420.

    Article  CAS  Google Scholar 

  • Suppakul, P., Sonneveld, K., Bigger, S. W., & Miltz, J. (2008). Efficacy of polyethylene-based antimicrobial films containing principal constituents of basil. LWT, 41, 779–788.

    Article  CAS  Google Scholar 

  • Swapna Joseph, C., Harish Prashanth, H. V., Rastogi, N. K., Indiramma, A. R., Yella Reddy, S., & Raghavarao, K. S. M. S. (2009) Optimum blend of chitosan and poly-(ε-caprolactone) for fabrication of films for food packaging applications. Food Bioprocess Technology. doi:10.1007/s11947-009-0203-1.

  • Vartianen, J., Skytta, E., Ahvenainen-Rantala, R., & Enqvisit, J. (2003). Antimicrobial and barrier properties of LDPE films containing Imazalil and EDTA. Journal of Plastic Film and Sheeting, 19, 249–261.

    Article  Google Scholar 

  • Vermeiren, L., Devlieghere, F., Beest, M. V., Kruijf, N. D., & Debever, J. (1999). Developments in the active packaging of foods. Trends in Food Science and Technology, 10, 77–86.

    Article  CAS  Google Scholar 

  • Wang, A. L., Yin, H. B., Ren, M., Cheng, X. N., Zhou, Q. F., & Zhang, X. F. (2006). Effects of different functional group-containig organics on morphology-controled synthesis of silver nanoparticles at room temperature. Acta Metallurgica Sinica, 19(5), 362–370.

    Article  Google Scholar 

  • Xie, M., & Li, H. (2008). Mechanical properties of an ultrahigh-molecular-weight polyethylene/polypropylene blend containing poly(ethylene glycol) additives. Journal of Applied Polymer Science, 108(5), 3148–3153.

    Article  CAS  Google Scholar 

  • Zielinska, A., Skwarek, E., Zaleska, A., Gazda, M., & Hupka, J. (2009). Preparation of silver nanoparticles with controlled particle size. Procedia Chemistry, 1, 1560–1566.

    Article  CAS  Google Scholar 

  • Zwietering, M., Jongenberger, I., Roumbouts, F. M., & Riet, K. V. (1990). Modeling of bacterial growth curve. Applied and Enviromental Microbiology, 56(6), 1875–1881.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russly Abdul Rahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jokar, M., Abdul Rahman, R., Ibrahim, N.A. et al. Melt Production and Antimicrobial Efficiency of Low-Density Polyethylene (LDPE)-Silver Nanocomposite Film. Food Bioprocess Technol 5, 719–728 (2012). https://doi.org/10.1007/s11947-010-0329-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-010-0329-1

Keywords

Navigation