Skip to main content

Advertisement

Log in

Structural, optical spectroscopy, optical conductivity and dielectric properties of BaTi0.5(Fe0.33W0.17)O3 perovskite ceramic

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Fe and W co-substituted BaTiO3 perovskite ceramics, compositional formula BaTi0.5(Fe0.33W0.17)O3, were synthesized by the standard solid-state reaction method and studied by X-ray diffraction, scanning electron microscopy and spectroscopy ellipsometry. The prepared sample remains as double phases with the perovskite structure. The structure refinement of BaTi0.5(Fe0.33W0.17)O 3 sample was performed in the cubic double and hexagonal setting of the \(\text {Fm}\boldsymbol {\bar {{3}}\mathrm {m}}\) and P6 3 /mmc space groups. Spectral dependence of optical parameters; real and imaginary parts of the dielectric function, refractive index, extinction coefficient and absorption coefficient were carried out in the range between 1.4 and 4.96 eV by using the ellipsometry experiments. Direct bandgap energy of 4.36 eV was found from the analysis of absorption coefficient vs. photon energy. In addition, the oscillator energy, dispersion energy and zero-frequency refractive index values were found from the analysis of the experimental data using Wemple–DiDomenico single-effective-oscillator model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Sasirekha N, Rajesh B and Chen Y-W 2008, Indian Chem. Res. 47 1868

    Article  Google Scholar 

  2. Zhu W, Akbar S A, Asiaie R and Dutta P K 1997 J. Appl. Phys. 36 214

    Article  Google Scholar 

  3. Yogo T, Yamamoto T, Sakamoto W and Hirano S 2004 J. Mater. Res. 19 3290

    Article  Google Scholar 

  4. Hu M Z C, Miller G A, Payzant E A and Rawn C J 2007 J. Mater. Sci. 35 2927

    Article  Google Scholar 

  5. Choi G J, Lee S K, Woo K J, Koo K K and Cho Y S 1998 Chem. Mater. 10 4104

    Article  Google Scholar 

  6. Huybrechts B, Ishizaki K and Takata M 1995 J. Mater. Sci. 30 2463

    Article  Google Scholar 

  7. Wang X S, Zhang L L, Liu H, Zhai J W and Yao X 2008 Mater. Chem. Phys. 112 675

    Article  Google Scholar 

  8. Nedelcu L et al 2013, Appl. Surf. Sci. 278 158

    Article  Google Scholar 

  9. Devi S and Jha A K 2009 Asian J. Chem. 21 117

    Google Scholar 

  10. Devi S and Jha A K 2009 Phys. B 404 4290

    Article  Google Scholar 

  11. Lin F and Shi W 2010 J. Alloys Comp. 495 167

    Article  Google Scholar 

  12. Ivanov S A, Eriksson S G, Erikssen J, Tellgren R and Rundlof H 2004 Mater. Res. Bull. 39 615

    Article  Google Scholar 

  13. Grey I E, Li C, Cranswick L M D, Roth R S and Vanderah T A 1998 J. Solid State Chem. 135 312

    Article  Google Scholar 

  14. Dang N V, Nguyen H M, Chuang P Y, Thanh T D, Lam V D, Lee C H and Hong L V 2012 Chinese J. Phys. 50 262

    Google Scholar 

  15. Rietveld H M 1969 J. Appl. Crystallogr. 2 65

    Article  Google Scholar 

  16. Aspnes D E 2014 Thin Solid Films 571 334

    Article  Google Scholar 

  17. Zidi N, Chaouchi A, d’Astorg S, Rguiti M and Courtois C 2014 J. Alloys Comp. 590 557

    Article  Google Scholar 

  18. Goldschmidt V M 1958 Geochemistry (London: Oxford University Press)

    Google Scholar 

  19. Hwang H Y, Choeng S W, Radaelli R G, Marezio M and Batlog B 1995 Phys. Rev. Lett. 75 914

    Article  Google Scholar 

  20. de Teresa J M, Ibarra M R, Garcia J, Blasco J, Ritter C, Algarabel P A, Marguina C and del Moral A 1996 Phys. Rev. Lett. 6 3392

    Article  Google Scholar 

  21. Megaw H D 1946 Proc. Phys. Soc. 58 133

    Article  Google Scholar 

  22. Reaney I M and Ubic R 1999 Ferroelectric 228 23

    Article  Google Scholar 

  23. Shikano M, Ishiyama O, Inaguma Y, Nakamura T and Itoh M 1995 J. Solid State Chem. 120 238

    Article  Google Scholar 

  24. Jiang L Q et al 2006, J. Phys. Conf. Series 67 1531

    Google Scholar 

  25. Moreira R L and Dias A 2007 J. Phys. Conf. Series 68 1617

    Google Scholar 

  26. Ubic R 2007 J. Am. Ceram. Soc. 90 3326

    Article  Google Scholar 

  27. Shannon R D 1976 Acta Crystallogr. A 32 751

    Article  Google Scholar 

  28. Zhao F, Yue Z, Pei J, Zhuang H, Gui Z and Li L 2007 J. Am. Ceram. Soc. 90 2461

    Article  Google Scholar 

  29. Taylor A 1961 X-ray metallography (New York: Wiley)

    Google Scholar 

  30. Mittemeijer E J and Scardi P 2004 Diffraction analysis of the microstructure of materials (Berlin: Springer)

    Book  Google Scholar 

  31. Biju V, Sugathan N, Vrinda V and Salini S L 2008 J. Mater. Sci. 43 1175

    Article  Google Scholar 

  32. Wiliamson G K and Hall W H 1953 Acta Metall. 1 22

    Article  Google Scholar 

  33. Jellison G E and Modine F A 1996 Appl. Phys. Lett. 69 371

    Article  Google Scholar 

  34. Loyalka S K and Riggs C A 1995 Appl. Spectroscopy 49 1107

    Article  Google Scholar 

  35. Marfing J 1980 J. Physique 41 971

    Article  Google Scholar 

  36. Car dona M 1965 Phys. Rev. 140 651

    Article  Google Scholar 

  37. Pasierb P, Komornicki S and Radecka M 1998 Thin Solid Films 324 134

    Article  Google Scholar 

  38. Thomas R, Dube D C, Kamalasanan M N and Chandra S 1999 Thin Solid Films 346 212

    Article  Google Scholar 

  39. Pencheva T and Nenkov M 1998 Thin Solid Films 324 305

    Article  Google Scholar 

  40. Lee M K, Liao H C, Tung K W, Shih C M and Shih T H 2002 J. Phys. D: Appl. Phys. 35 61

    Article  Google Scholar 

  41. Tanga X G, Chana H L W and Dingb A L 2004 Thin Solid Films 460 227

    Article  Google Scholar 

  42. Zhou H, Kim H K, Shi F G, Zhao B and Yota J 2002 Microelectron. J. 33 999

    Article  Google Scholar 

  43. Xi J Q, Kim J K and Schubert E F 2005 Nano Lett. 5 1385

    Article  Google Scholar 

  44. Memisevic J, Korampally V, Gangopadhyay S and Grant S A 2009 Sens. Actuators A 141 227

    Article  Google Scholar 

  45. Wanga H, Xua J, Maa C, Zhaoa P, Wanga L, Biana L, Rena W and Changa A 2015 Ceram. Inter. 41 475

    Article  Google Scholar 

  46. Mott N F and Davis E A 1979 Electronic processes in non-crystalline materials (Oxford: Clarendon Press)

    Google Scholar 

  47. Ming Oo H, Mohamed-Kamari H and Wan-Yusoff W M D 2012 Int. J. Mol. Sci. 13 4623

    Article  Google Scholar 

  48. Gaur A and Sharma N 2013 World Acad. Sci. Eng. Technol. 7 1209

    Google Scholar 

  49. Thomas R, Dube D C, Kamalasanan M N and Chandra S 1999 Thin Solid Films 346 212

    Article  Google Scholar 

  50. Tian H Y, Luo W G, Pu X H, He X Y, Qiu P S, Ding A L, Yang S H and Mo D 2001 J. Phys.: Condens. Matter. 13 4065

    Google Scholar 

  51. Duan Z H, Hu Z G, Jiang K, Li Y W, Wang G S, Dong X L and Chu J H 2013 Appl. Phys. Lett. 102 151908

    Article  Google Scholar 

  52. Wu L, Wei C, Wu T and Liu H 1983 J. Phys. C: Solid State Phys. 16 2803

    Article  Google Scholar 

  53. Pant M, Kanchant D K and Condaliya N 2009 Mater. Chem. Phys. 115 98

    Article  Google Scholar 

  54. Urbach F 1953 Phys. Rev. 92 1324

    Article  Google Scholar 

  55. Wemple S H and DiDomenico M 1971 Phys. Rev. B 3 1338

    Article  Google Scholar 

  56. Meng L J and Dos Santos M P 1993 Thin Solid Films 226 22

    Article  Google Scholar 

  57. Meng L J, Andritschky M and Dos Santos M P 1993 Thin Solid Films 223 242

    Article  Google Scholar 

  58. Wemple S H and DiDomenico M 1970 Phys. Rev. B 1 193

    Article  Google Scholar 

  59. Salem A M 2002 Appl. Phys. A 74 205

    Article  Google Scholar 

  60. Fadel M, Fayek S A, Abou-Helal M O, Ibrahim M M and Shakra A M 2009 J. Alloys Compd. 485 604

    Article  Google Scholar 

  61. Yakuphanoglu F, Sekerci M and Ozturk O F 2004 Opt. Commun. 239 275

    Article  Google Scholar 

  62. Dash S, Choudhary R N P and Kumar A 2014 J. Phys. Chem. Solids 75 7713

    Article  Google Scholar 

  63. Sharma S, Shamim K, Ranjana A, Raib R, Kumarib P and Sinha S 2015 Ceram. Inter. 41 7713

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FAYÇAL BOURGUIBA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BOURGUIBA, F., DHAHRI, A., TAHRI, T. et al. Structural, optical spectroscopy, optical conductivity and dielectric properties of BaTi0.5(Fe0.33W0.17)O3 perovskite ceramic. Bull Mater Sci 39, 1765–1774 (2016). https://doi.org/10.1007/s12034-016-1305-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1305-9

Keywords

Navigation