Skip to main content
Log in

Ni(II) decorated nano silicoaluminophosphate molecular sieves-modified carbon paste electrode as an electrocatalyst for electrooxidation of methanol

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this work, we reported a method for the synthesis of nanosized silicoaluminophosphate (SAPO) molecular sieves that are important members of zeolites family. The synthesized SAPO was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) as well as infrared (IR) techniques. Then, the modified carbon paste electrode was prepared by nano SAPO molecular sieves and nickel (II) ion incorporated at this electrode. The electrochemical behaviour of the modified electrode (Ni-SAPO/CPE) towards the oxidation of methanol was investigated by cyclic voltammetry and chronoamperometry methods. It has been found that the oxidation current is extremely increased by using Ni-SAPO/CPE compared to the unmodified Ni-CPE, it seems that Ni2+ inclusion into nano SAPO channels provides the active sites for catalysis of methanol oxidation. The effect of some parameters such as scan rate of potential, concentration of methanol, amount of SAPO was investigated on the oxidation of methanol at the surface of modified electrode. The values of electron transfer coefficient, charge-transfer rate constant and electrode surface coverage for the Ni(II)/Ni(III) couple in the surface of Ni-SAPO/CPE were found to be 0.555, 0.022 s−1 and 5.995 × 10−6 mol cm−2, respectively. Also, the diffusion coefficient and the mean value of catalytic rate constant for methanol and redox sites of modified electrode were obtained to be 1.16 × 10−5 cm2 s−1 and 4.62 × 104 cm3 mol−1 s−1, respectively. The good catalytic activity, high sensitivity, good selectivity and stability and easy in preparation rendered the Ni-SAPO/CPE to be a capable electrode for electrocatalytic oxidation of methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Parsons R and Vandernoot T 1988 J. Electroanal. Chem. 257 9

    Article  Google Scholar 

  2. Nishimura K, Machida K and Enyo M 1988 J. Electroanal. Chem. 251 117

    Article  Google Scholar 

  3. Lima A, Coutanceau C, Leger J M and Lamy C 2001 J. Appl. Electrochem. 31 379

    Article  Google Scholar 

  4. Abdel Rahim M A, Abdel Hameed R M and Khalil M W 2004 J. Power Sources 134 160

    Article  Google Scholar 

  5. Raoof J B, Karimi M A, Hosseini S R and Mangelizadeh S 2010 J. Electroanal. Chem. 638 33

    Article  Google Scholar 

  6. Rahimnejad M, Hassaninejad-Darzi S K and Pourali S M 2015 J. Iran. Chem. Soc. 12 413

    Article  Google Scholar 

  7. Ourari A, Nora H, Noureddine C and Djouhra A 2015 Electrochim. Acta 170 311

    Article  Google Scholar 

  8. Adams R N 1958 Anal. Chem. 30 1576

    Article  Google Scholar 

  9. Ojani R, Raoof J B and Khanghah Y A 2011 Electrochim. Acta 56 3380

    Article  Google Scholar 

  10. Mojovic Z, Bankovic P, Jovic-Jovicic N, Milutinovic-Nikolic A, Abu Rabi-Stankovic A and Jovanovi D 2011 Int. J. Hydrogen Energy 36 13343

    Article  Google Scholar 

  11. Fleischmann M, Korinek K and Pletcher D 1971 J. Electroanal. Chem. 31 39

    Article  Google Scholar 

  12. Taraszewska J and Rosłonek G 1994 J. Electroanal. Chem. 364 209

    Article  Google Scholar 

  13. Danaee I, Jafarian M, Forouzandeh F, Gobal F and Mahjani M G 2008 Int. J. Hydrogen Energy 33 4367

    Article  Google Scholar 

  14. Abdel Rahim M A, Hassan H B and Abdel Hamid R M 2006 J. Power Sources 154 59

    Article  Google Scholar 

  15. Danaee I, Jafarian M, Forouzandeh F, Gobal F and Mahjani M G 2009 Int. J. Hydrogen Energy 34 859

    Article  Google Scholar 

  16. Bidault F, Brett D J L, Middleton P H, Abson N and Brandon N P 2009 Int. J. Hydrogen Energy 34 6799

    Article  Google Scholar 

  17. Habibi B and Gahramanzadeh R 2011 Int. J. Hydrogen Energy 36 1913

    Article  Google Scholar 

  18. Sun L, Hao Y, Zhang C, Ran R and Shao Z 2010 Int. J. Hydrogen Energy 35 7971

    Article  Google Scholar 

  19. Breck D W 1974 Zeolite molecular sieves: structure, chemistry and use (New York: Wiley)

    Google Scholar 

  20. Samadi-Maybodi A, Hassani Nejad-Darzi S K, Ganjali M R and Ilkhani H 2013 J. Solid State Electrochem. 17 2043

    Article  Google Scholar 

  21. Tanaka K, Choo C K, Sumi S, Kamitani Y, Fujii T, Satoh K et al 2002, J. Phys. Chem. B 106 4155

    Article  Google Scholar 

  22. Hudson M R, Queen W L, Mason J A, Fickel D W, Lobo R F and Brown C M 2012 J. Am. Chem. Soc. 134 1970

    Article  Google Scholar 

  23. Pires J, Fernandes A C and Duraiswami D 2014 Chin. J. Catal. 35 1492

    Article  Google Scholar 

  24. Nishanth K G, Sridhar P, Pitchumani S and Shukla A K 2013 Bull. Mater. Sci. 36 353

    Article  Google Scholar 

  25. Aghaei E and Haghighi M 2015 Powder Technol. 269 358

    Article  Google Scholar 

  26. Raoof J B, Chekin F and Ehsani V 2015 Bull. Mater. Sci. 38 135

    Article  Google Scholar 

  27. Tonscheidt A, Ryder P L, Jaeger N I and Schulz-Ekloff G 1996 Zeolites 16 271

    Article  Google Scholar 

  28. Mentus S, Mojovic Z, Cvjeticanin N and Tesic Z 2004 J. New Mater. Electrochem. Syst. 7 213

    Google Scholar 

  29. Raoof J B, Azizi N, Ojani R, Ghodrati S, Abrishamkar M and Chekin F 2011 Int. J. Hydrogen Energy 36 13295

    Article  Google Scholar 

  30. Abrishamkar M, Azizi S N and Raoof J B 2012 Monatsh. Chem. 143 409

    Article  Google Scholar 

  31. Azizi S N, Ghasemi S and Chiani E 2013 Electochim. Acta 88 463

    Article  Google Scholar 

  32. Azizi S N, Ghasemi S and Yazdani-Sheldarrei H 2013 Int. J. Hydrogen Energy 38 12774

    Article  Google Scholar 

  33. Azizi S N, Ghasemi S and Gilani N S 2014 Chin. J. Catal. 35 383

    Article  Google Scholar 

  34. Yang J, Tan J, Yang F, Li X, Liu X and Ma D 2012 Electrochem. Commun. 23 13

    Article  Google Scholar 

  35. Lin S, Li J, Sharma R P, Yu J and Xu R 2010 Top. Catal. 53 1304

    Article  Google Scholar 

  36. Yang G, Wei Y, Xu S, Chen J, Li J, Liu Z, Yu J and Xu R 2013 J. Phys. Chem. C 117 8214

    Article  Google Scholar 

  37. Izadbakhsh A, Farhadi F, Khorasheh F, Sahebdelfar S, Asadi M and Feng Y Z 2009 Appl. Catal. A—Gen. 364 48

    Article  Google Scholar 

  38. Treacy M M J and Higgins J B 2007 Collection of simulated XRD powder patterns for zeolites, 5th revised edn, Published on behalf of the Structure Commission of the International Zeolite Association (Amsterdam, Jordan Hill: Elsevier)

  39. Sang S, Chang F, Liu Z, He C, He Y and Xu L 2004 Catal. Today 93–95 729

    Article  Google Scholar 

  40. Klug H P and Alexander L E 1964 X-ray diffraction procedures, 2nd edn (New York: Wiley)

  41. Liu G, Tian P, Li J, Zhang D, Zhou F and Liu Z 2008 Micropor. Mesopor. Mater. 111 143

    Article  Google Scholar 

  42. Beitollah H, Goodarzian M, Khalilzadeh M A, Karimi-Maleh H, Hassanzadeh M and Tajbakhsh M 2012 J. Mol. Liq. 173 137

    Article  Google Scholar 

  43. Hassaninejad–Darzi S K 2014 J. Electroceram. 33 252

    Article  Google Scholar 

  44. Gharibi H, Kakaei K and Zhiani M 2010 J. Phys. Chem. C 114 5233

    Article  Google Scholar 

  45. El-Shafei A A, Elhafeez A M A and Mostafa H A 2010 , J. Solid State Electrochem. 14 185

    Article  Google Scholar 

  46. Nagashree K L and Ahmed M F 2010 J. Solid State Electrochem. 14 2307

    Article  Google Scholar 

  47. Bode H, Dehmelt K and Witte J 1966 Electrochim. Acta 11 1079

    Article  Google Scholar 

  48. Mojovic Z, Mentus S and Krstic I 2007 Russ. J. Phys. Chem. A 81 1452

    Article  Google Scholar 

  49. Ojani R, Raoof J B and Safshekan S 2012 J. Appl. Electrochem. 42 81

    Article  Google Scholar 

  50. Ojani R, Raoof J B and Zamani S 2012 Bioelectrochemistry 85 44

    Article  Google Scholar 

  51. Laviron E 1979 J. Electroanal. Chem. 101 19

    Article  Google Scholar 

  52. Luo H, Shi Z, Li N, Gu Z and Zhuang Q 2001 Anal. Chem. 73 915

    Article  Google Scholar 

  53. Bard A J and Faulkner L R 2001 Electrochemical methods: fundamentals and applications (New York: Wiley)

    Google Scholar 

  54. Cardoso W S, Dias V L N, Costa W M, Rodrigues I A, Marques E P, Sousa A G et al 2009, J. Appl. Electrochem. 39 55

    Article  Google Scholar 

  55. Hassaninejad-Darzi S K and Rahimnejad M 2014 J. Iran. Chem. Soc. 11 1047

    Article  Google Scholar 

  56. Velazquez-Palenzuela A, Centellas F, Garrido J A, Arias C, Rodriguez R M, Brillas E and Cabot P L 2011 J. Power Sources 196 3503

    Article  Google Scholar 

  57. Gosser D K 1994 Cyclic voltammetry simulation and analysis of reaction mechanism (New York: Wiley)

    Google Scholar 

  58. Galus Z 1976 Fundamentals of electrochemical analysis (New York: Ellis Horwood)

    Google Scholar 

  59. Greef R, Peat R, Peter L M, Pletcher D and Robinson J 1990 Instrumental methods in electrochemistry (Chichster: Ellis Horwood)

  60. Xue T, Wang Y M and He M Y 2012 Micropor. Mesopor. Mater. 156 29

    Article  Google Scholar 

  61. Raoof J B, Ojani R and Hosseini S R 2011 J. Power Sources 196 1855

    Article  Google Scholar 

  62. Ojani R, Raoof J B and Salmany-Afagh P 2004 J. Electroanal. Chem. 571 1

    Article  Google Scholar 

  63. Fontana M G 1987 Corrosion engineering (New York: McGraw-Hill)

  64. Ciszewski A, Milczarek G, Lewandowska B and Krutowski K 2003 Electroanalysis 15 518

    Article  Google Scholar 

  65. Ojani R, Raoof J B, Fathi S and Alami-Valikchali S 2011 , J. Solid State Electrochem. 15 1935

    Article  Google Scholar 

  66. Ojani R, Raoof J B and Fathi S 2009 J. Solid State Electrochem. 13 927

    Article  Google Scholar 

  67. Golikand A N, Asgari M, Maragheh M G and Shahrokhian S 2006 J. Electroanal. Chem. 588 155

    Article  Google Scholar 

  68. El-shafei A A 1999 J. Electroanal. Chem. 471 89

    Article  Google Scholar 

  69. Liu S J 2004 Electrochim. Acta 49 3235

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SEYED KARIM HASSANINEJAD-DARZI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

HASSANINEJAD-DARZI, S.K., RAHIMNEJAD, M. & MOKHTARI, S.E. Ni(II) decorated nano silicoaluminophosphate molecular sieves-modified carbon paste electrode as an electrocatalyst for electrooxidation of methanol. Bull Mater Sci 39, 901–912 (2016). https://doi.org/10.1007/s12034-016-1194-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1194-y

Keywords

Navigation