Skip to main content
Log in

Electrocatalytic Performance of Nickel Hydroxide-Decorated Microporous Nanozeolite Beta-Modified Carbon Paste Electrode for Formaldehyde Oxidation

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

In this paper, aluminosilicate nanozeolite beta has been prepared and described using X-ray diffraction (XRD), nitrogen sorption isotherm, Fourier transform infrared (FT-IR), transmission electron micrograph (TEM), and field emission scanning electronic microscopy (FESEM) techniques; TEM image demonstrated semispherical particles with dimensions under 50 nm. The BET surface area, total pore volume, and pore diameter of it were attained to be 321 m2 g−1, 0.053 cm3 g−1, and 1.22 nm, respectively. The modified carbon paste electrode by aluminosilicate nanozeolite beta and nickel hydroxide (Ni(OH)2-Beta/CPE) was applied for formaldehyde (HCHO) electrocatalytic oxidation. The obtained results specify that Ni(OH)2-Beta/CPE demonstrates worthy electrocatalytic activity for oxidation of HCHO due to mesoporous construction and the great surface area of nanozeolite. The electron-transfer coefficient, catalytic rate constant, and diffusion coefficient are found to be 0.69, 2.08 × 106 cm3 mol−1 s−1, and 4.4 × 10−7 cm2 s−1, respectively. The Ni(OH)2-Beta/CPE exhibited low background current, simplicity of surface renewal, good reproducibility, and stability and also displayed high stability up to 300 cycles and 3000 s without an important loss in the current density. This modified electrode has better poisoning tolerance capability than bare CPE for HCHO electrocatalytic oxidation and is a higher device for the long term accomplishment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. B. Yang, Y. Yu, J. Qiao, L. Yuan, X. Shen, X. Hu, Solution plasma method for the preparation of Cu-Ni/CuO-NiO with excellent methanol electrocatalytic oxidation performance. Appl. Surf. Sci. 513, 145808 (2020)

    Article  CAS  Google Scholar 

  2. H.S. Ferreira, H.S. Ferreira, M.V. da Silva, C. Maria da Graça, P. Bargiela, M.d.C. Rangel, K.I. Eguiluz, G.R. Salazar-Banda, Improved electrocatalytic activity of Pt supported onto Fe-doped TiO2 toward ethanol oxidation in acid media. Mater. Chem. Phys. 245, 122753 (2020)

  3. I. Pötzelberger, C.C. Mardare, W. Burgstaller, A.W. Hassel, Maximum electrocatalytic oxidation performance for formaldehyde in a combinatorial copper-palladium thin film library. Appl. Catal. A-Gen. 525, 110–118 (2016)

    Article  Google Scholar 

  4. S.R. Hosseini, J.-B. Raoof, S. Ghasemi, Z. Gholami, Pd-Cu/poly (o-Anisidine) nanocomposite as an efficient catalyst for formaldehyde oxidation. Mater. Res. Bull. 80, 107–119 (2016)

    Article  CAS  Google Scholar 

  5. A. Touny, R.H. Tammam, M. Saleh, Electrocatalytic oxidation of formaldehyde on nanoporous nickel phosphate modified electrode. Appl. Catal. B-Environ. 224, 1017–1026 (2018)

    Article  CAS  Google Scholar 

  6. R. Ojani, J.-B. Raoof, Y. Ahmady-Khanghah, S. Safshekan, Copper-poly (2-aminodiphenylamine) composite as catalyst for electrocatalytic oxidation of formaldehyde in alkaline media. Int. J. Hydrogen Energy 38(13), 5457–5463 (2013)

    Article  CAS  Google Scholar 

  7. C. Korzeniewski, C.L. Childers, Formaldehyde yields from methanol electrochemical oxidation on platinum. J. Phys. Chem. B 102(3), 489–492 (1998)

    Article  CAS  Google Scholar 

  8. S.K. Hassaninejad-Darzi, A novel, effective and low cost catalyst for formaldehyde electrooxidation based on nickel ions dispersed onto chitosan-modified carbon paste electrode for fuel cell. J. Electroceram. 33(3–4), 252–263 (2014)

    Article  CAS  Google Scholar 

  9. A. Safavi, N. Maleki, F. Farjami, E. Farjami, Electrocatalytic oxidation of formaldehyde on palladium nanoparticles electrodeposited on carbon ionic liquid composite electrode. J. Electroanal. Chem. 626(1–2), 75–79 (2009)

    Article  CAS  Google Scholar 

  10. C. Zhang, Y. Wang, W. Song, H. Zhang, X. Zhang, R. Li, C. Fan, Synthesis of MnO2 modified porous carbon spheres by preoxidation-assisted impregnation for catalytic oxidation of indoor formaldehyde. J. Porous Mater. 27(3), 801–815 (2020)

    Article  CAS  Google Scholar 

  11. Y. Xia, M. Lin, D. Ren, Y. Li, F. Hu, W. Chen, Preparation of high surface area mesoporous nickel oxides and catalytic oxidation of toluene and formaldehyde. J. Porous Mater. 24(3), 621–629 (2017)

    Article  CAS  Google Scholar 

  12. F. Niu, Q. Yi, A novel nanoporous palladium catalyst for formaldehyde electro-oxidation in alkaline media. Rare Met. 30(1), 102–105 (2011)

    Article  CAS  Google Scholar 

  13. J.-B. Raoof, S.R. Hosseini, S. Rezaee, A simple and effective route for preparation of platinum nanoparticle and its application for electrocatalytic oxidation of methanol and formaldehyde. J. Mol. Liq. 212(Supplement C), 767–774 (2015)

  14. B. Habibi, S. Ghaderi, Electrooxidation of formic acid and formaldehyde on the Fe3O4@ Pt core-shell nanoparticles/carbon-ceramic electrode. Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 35(4), 99–112 (2016)

    CAS  Google Scholar 

  15. Y. Chen, J. He, H. Tian, D. Wang, Q. Yang, Enhanced formaldehyde oxidation on Pt/MnO2 catalysts modified with alkali metal salts. J. Colloid Interface Sci. 428(Supplement C), 1–7 (2014)

  16. J.-B. Raoof, S.R. Hosseini, R. Ojani, S. Aghajani, Fabrication of bimetallic Cu/Pd particles modified carbon nanotube paste electrode and its use towards formaldehyde electrooxidation. J. Mol. Liq. 204(Supplement C), 106–111 (2015)

  17. V. Selvaraj, A.N. Grace, M. Alagar, Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes. J. Colloid Interface Sci. 333(1), 254–262 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. J. Monzó, Y. Malewski, F.J. Vidal-Iglesias, J. Solla-Gullon, P. Rodriguez, Electrochemical oxidation of small organic molecules on Au nanoparticles with preferential surface orientation. ChemElectroChem 2(7), 958–962 (2015)

    Article  Google Scholar 

  19. G. Padmalaya, B.S. Sreeja, S. Shoba, R. Rajavel, S. Radha, M. Arivanandan, S. Shrestha, Synthesis of micro-dumbbell shaped rGO/ZnO composite rods and its application towards as electrochemical sensor for the simultaneous determination of ammonia and formaldehyde using hexamine and its structural analysis. J. Inorg. Organomet. P 30(3), 943–954 (2020)

  20. E.O. Nachaki, P.M. Ndangili, N.M. Naumih, E. Masika, Nickel-palladium-based electrochemical sensor for quantitative detection of formaldehyde. ChemistrySelect 3(2), 384–392 (2018)

    Article  CAS  Google Scholar 

  21. S.A. Al-Jendan, W. Alarjan, I. Elghamry, A. Touny, M.M. Saleh, M.E. Abdelsalam, An optimized nickel phosphate/carbon composite electrocatalyst for the oxidation of formaldehyde. Int. J. Hydrogen Energy 45(28), 14320–14333 (2020)

    Article  CAS  Google Scholar 

  22. Š Trafela, S. Šturm, K.Ž Rožman, Surface modification for the enhanced electrocatalytic HCHO oxidation performance of Ni-thin-film-based catalysts. Appl. Surf. Sci. 537, 147822 (2021)

    Article  CAS  Google Scholar 

  23. T. Yang, Y. Huo, Y. Liu, Z. Rui, H. Ji, Efficient formaldehyde oxidation over nickel hydroxide promoted Pt/γ-Al 2 O 3 with a low Pt content. Appl. Catal. B-Environ. 200, 543–551 (2017)

    Article  CAS  Google Scholar 

  24. S. Gheytani, S. Hassaninejad-Darzi, M. Taherimehr, Formaldehyde electro-catalytic oxidation onto carbon paste electrode modified by MIL-101 (Cr) nanoparticles. Fuel Cells 20(1), 3–16 (2020)

    Article  CAS  Google Scholar 

  25. S.N. Azizi, S. Ghasemi, F. Amiripour, Nickel/P nanozeolite modified electrode: a new sensor for the detection of formaldehyde. Sensors Actuators B: Chem. 227, 1–10 (2016)

    Article  CAS  Google Scholar 

  26. S.N. Azizi, S. Ghasemi, M. Derakhshani-mansoorkuhi, The synthesis of analcime zeolite nanoparticles using silica extracted from stem of sorghum Halepenesic ash and their application as support for electrooxidation of formaldehyde. Int. J. Hydrogen Energy 41(46), 21181–21192 (2016)

    Article  CAS  Google Scholar 

  27. S. Hassaninejad-Darzi, M. Rahimnejad, M. Gholami-Esfidvajani, Electrocatalytic oxidation of formaldehyde onto carbon paste electrode modified with nickel decorated nanoporous cobalt-nickel phosphate molecular sieve for fuel cell. Fuel Cells 16(1), 89–99 (2016)

    Article  CAS  Google Scholar 

  28. S. Kavian, S.N. Azizi, S. Ghasemi, Preparation of a novel supported electrode comprising a nickel (II) hydroxide-modified carbon paste electrode (Ni (OH) 2-X/CPE) for the electrocatalytic oxidation of formaldehyde. Chinese J. Catal. 37(1), 159–168 (2016)

    Article  CAS  Google Scholar 

  29. M. Abrishamkar, F.B. Kahkeshi, Synthesis and characterization of nano-ZSM-5 zeolite and its application for electrocatalytic oxidation of formaldehyde over modified carbon paste electrode with ion exchanged synthesized zeolite in alkaline media. Microporous Mesoporous Mater. 167, 51–54 (2013)

    Article  CAS  Google Scholar 

  30. J.B. Raoof, F. Chekin, R. Ojani, S. Ghodrati, Ni/ZSM-5 zeolite modified carbon paste electrode as an efficient electrode for electrocatalytic oxidation of formaldehyde. J. Chin. Chem. Soc. 60(5), 546–550 (2013)

    Article  CAS  Google Scholar 

  31. M.M. Reddy, M.A. Kumar, P. Swamy, M. Naresh, K. Srujana, L. Satyanarayana, A. Venugopal, N. Narender, N-Alkylation of amines with alcohols over nanosized zeolite beta. Green Chem. 15(12), 3474–3483 (2013)

    Article  CAS  Google Scholar 

  32. S. Mintova, V. Valtchev, T. Onfroy, C. Marichal, H. Knözinger, T. Bein, Variation of the Si/Al ratio in nanosized zeolite beta crystals, microporous mesoporous mater. 90(1–3), 237–245 (2006)

  33. B.M. Daas, S. Ghosh, Fuel cell applications of chemically synthesized zeolite modified electrode (ZME) as catalyst for alcohol electro-oxidation-a review. J. Electroanal. Chem. 783, 308–315 (2016)

    Article  CAS  Google Scholar 

  34. R.W. Murray, A.G. Ewing, R.A. Durst, Chemically modified electrodes. Molecular design for electroanalysis. Anal. Chem. 59(5), 379A-390A (1987)

  35. N. Hoque, S. Lee, Y.B. Park, S. Roy, M.J. Baruah, S. Biswas, G. Gogoi, T.J. Bora, R. Dutta, K.K. Bania, Dual matrix influence on Ni (II) rich hybrid catalyst for electrochemical methanol oxidation reaction. ChemNanoMat e202200280 (2022)

  36. N. Hoque, M.J. Baruah, S. Lee, Y.-B. Park, R. Dutta, S. Roy, K.K. Bania, Cu (OH) 2-Ni (OH) 2 engulfed by zeolite-Y hydroxyl nest and multiwalled carbon nanotube for effective methanol oxidation reaction. Electrochim. Acta 397, 139313 (2021)

    Article  CAS  Google Scholar 

  37. N. Hoque, M.J. Baruah, A.H. Biman, S. Biswas, G. Gogoi, R. Dutta, K.K. Bania, Impregnating rhodium (0) sites through zeolite-Y templation in a hybrid Rh–Ni catalyst for alcohol electro-oxidation with low CO poisoning. ACS Applied Energy Materials (2022)

  38. M.M. Treacy, J.B. Higgins, Collection of simulated XRD powder patterns for zeolites Fifth (5th) Revised Edition, Elsevier (2007)

  39. N.B. Castagnola, P.K. Dutta, Nanometer-sized zeolite X crystals: use as photochemical hosts. J. Phys. Chem. B 102(10), 1696–1702 (1998)

    Article  CAS  Google Scholar 

  40. N. Goyal, V.K. Bulasara, S. Barman, Removal of emerging contaminants daidzein and coumestrol from water by nanozeolite beta modified with tetrasubstituted ammonium cation. J. Hazard. Mater. 344, 417–430 (2018)

    Article  CAS  PubMed  Google Scholar 

  41. B. Schoeman, E. Babouchkina, S. Mintova, V. Valtchev, J. Sterte, The synthesis of discrete colloidal crystals of zeolite beta and their application in the preparation of thin microporous films. J. Porous Mater. 8(1), 13–22 (2001)

    Article  CAS  Google Scholar 

  42. G. Huang, P. Ji, H. Xu, J.-G. Jiang, L. Chen, P. Wu, Fast synthesis of hierarchical beta zeolites with uniform nanocrystals from layered silicate precursor. Microporous Mesoporous Mater. 248, 30–39 (2017)

  43. Q. Lin, Y. Wei, W. Liu, Y. Yu, J. Hu, Electrocatalytic oxidation of ethylene glycol and glycerol on nickel ion implanted-modified indium tin oxide electrode. Int. J. Hydrogen Energy 42(2), 1403–1411 (2017)

    Article  CAS  Google Scholar 

  44. S.K. Hassaninejad-Darzi, M. Rahimnejad, S.N. Mirzababaei, Electrocatalytic oxidation of glucose onto carbon paste electrode modified with nickel hydroxide decorated NaA nanozeolite. Microchem. J. 128, 7–17 (2016)

    Article  CAS  Google Scholar 

  45. S. Eshagh-Nimvari, S. Karim Hassaninejad-Darzi, Synergistic effects of nanozeolite beta-MWCNTs on the electrocatalytic oxidation of ethylene glycol: Experimental design by response surface methodology. Mater. Sci. Eng.-B 268, 115125 (2021)

  46. K.S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57(4), 603–619 (1985)

    Article  CAS  Google Scholar 

  47. B. Aghamohseni, S.K. Hassaninejad-Darzi, M. Asadollahi-Baboli, A new sensitive voltammetric determination of thymol based on MnY nanozeolite modified carbon paste electrode using response surface methodology. Microchem. J. 145, 819–832 (2019)

    Article  CAS  Google Scholar 

  48. S.K. Hassaninejad-Darzi, M. Gholami-Esfidvajani, Electrocatalytic oxidation of ethanol using modified nickel phosphate nanoparticles and multi-walled carbon nanotubes paste electrode in alkaline media for fuel cell. Int. J. Hydrogen Energy 41(44), 20085–20099 (2016)

    Article  CAS  Google Scholar 

  49. S.K. Hassaninejad-Darzi, Fabrication of a non-enzymatic Ni (ii) loaded ZSM-5 nanozeolite and multi-walled carbon nanotubes paste electrode as a glucose electrochemical sensor. RSC Adv. 5(128), 105707–105718 (2015)

    Article  CAS  Google Scholar 

  50. K. Nagashree, M. Ahmed, Electrocatalytic oxidation of methanol on Ni modified polyaniline electrode in alkaline medium. J. Solid State Electrochem. 14(12), 2307–2320 (2010)

    Article  CAS  Google Scholar 

  51. A. El-Shafei, A.A. Elhafeez, H. Mostafa, Ethanol oxidation at metal–zeolite-modified electrodes in alkaline medium. Part 2: palladium–zeolite-modified graphite electrode. J. Solid State Electrochem. 14(2), 185–190 (2010)

  52. M. Fleischmann, K. Korinek, D. Pletcher, The oxidation of organic compounds at a nickel anode in alkaline solution. J. Electroanal. Chem. Inter. Electrochem. 31(1), 39–49 (1971)

    Article  CAS  Google Scholar 

  53. S. Hassaninejad-Darzi, M. Rahimnejad, M. Golami-Esfidvajani, Electrocatalytic oxidation of formaldehyde onto carbon paste electrode modified with nickel decorated nanoporous cobalt-nickel phosphate molecular sieve for fuel cell. Fuel Cells 16(1), 89–99 (2016)

    Article  CAS  Google Scholar 

  54. S.K. Hassaninejad-Darzi, M. Rahimnejad, F. Shajie, A.H.S. Kootenaei, Electrocatalytic oxidation of formaldehyde onto carbon paste electrode modified with hydrogen titanate nanotubes, including nickel hydroxide. Iran. J. Sci. Technol. A 42(3), 1259–1268 (2018)

    Article  Google Scholar 

  55. H. Bode, K. Dehmelt, J. Witte, Zur kenntnis der nickelhydroxidelektrode—I. Über das nickel (II)-hydroxidhydrat. Electrochim. Acta 11(8), 1079-IN1 (1966)

  56. A. Ciszewski, G. Milczarek, Kinetics of electrocatalytic oxidation of formaldehyde on a nickel porphyrin-based glassy carbon electrode. J. Electroanal. Chem. 469(1), 18–26 (1999)

    Article  CAS  Google Scholar 

  57. H. Yang, T. Lu, K. Xue, S. Sun, G. Lu, S. Chen, Electrocatalytic mechanism for formaldehyde oxidation on the highly dispersed gold microparticles and the surface characteristics of the electrode. J. Mol. Catal. A: Chem. 144(2), 315–321 (1999)

    Article  CAS  Google Scholar 

  58. M. Koper, M. Hachkar, B. Beden, Investigation of the oscillatory electro-oxidation of formaldehyde on Pt and Rh electrodes by cyclic voltammetry, impedance spectroscopy and the electrochemical quartz crystal microbalance. J. Chem. Soc. Faraday Trans. 92(20), 3975–3982 (1996)

  59. G. Barral, S. Maximovitch, F. Njanjo-Eyoke, Study of electrochemically formed Ni(OH)2 layers by EIS. Electrochim. Acta 41(7), 1305–1311 (1996)

    Article  CAS  Google Scholar 

  60. R. Ojani, J.-B. Raoof, S. Safshekan, Electrocatalytic oxidation of formaldehyde on nickel modified ionic liquid carbon paste electrode as a simple and efficient electrode. J. Appl. Electrochem. 42(2), 81–87 (2012)

    Article  CAS  Google Scholar 

  61. A. Samadi-Maybodi, S. Ghasemi, H. Ghaffari-Rad, Application of nano-sized nanoporous zinc 2-methylimidazole metal-organic framework for electrocatalytic oxidation of methanol in alkaline solution. J. Power Sources 303, 379–387 (2016)

    Article  CAS  Google Scholar 

  62. E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Inter. Electrochem. 101(1), 19–28 (1979)

    Article  CAS  Google Scholar 

  63. S. Hassaninejad-Darzi, Application of synthesized NaA nanozeolite as a novel supported electrode for the formaldehyde electro-catalytic oxidation. Fuel Cells 18(1), 82–95 (2018)

    Article  CAS  Google Scholar 

  64. A.J. Bard, L.R. Faulkner, Fundamentals and applications, electrochemical methods, 2nd edn. (Wiley, New York, 2001)

    Google Scholar 

  65. B. Habibi, N. Delnavaz, Electrocatalytic oxidation of formic acid and formaldehyde on platinum nanoparticles decorated carbon-ceramic substrate. IJHE 35(17), 8831–8840 (2010)

    CAS  Google Scholar 

  66. C. Wang, X. Zhang, X. Sun, Y. Ma, Facile fabrication of ethylene glycol intercalated cobalt-nickel layered double hydroxide nanosheets supported on nickel foam as flexible binder-free electrodes for advanced electrochemical energy storage. Electrochim. Acta 191, 329–336 (2016)

    Article  CAS  Google Scholar 

  67. Y. Shu, B. Li, J. Chen, Q. Xu, H. Pang, X. Hu, Facile synthesis of ultrathin nickel–cobalt phosphate 2D nanosheets with enhanced electrocatalytic activity for glucose oxidation. ACS Appl. Mater. Interfaces. 10(3), 2360–2367 (2018)

    Article  CAS  PubMed  Google Scholar 

  68. C.O. Laoire, S. Mukerjee, K. Abraham, E.J. Plichta, M.A. Hendrickson, Elucidating the mechanism of oxygen reduction for lithium-air battery applications. J. Phys. Chem. C 113(46), 20127–20134 (2009)

    Article  CAS  Google Scholar 

  69. D.K. Gosser, Cyclic voltammetry: simulation and analysis of reaction mechanisms. VCH New York 1993

  70. S.K. Hassaninejad-Darzi, Encapsulation of a nickel Salen complex in nanozeolite LTA as a carbon paste electrode modifier for electrocatalytic oxidation of hydrazine. Chin. J. Catal. 39(2), 283–296 (2018)

    Article  CAS  Google Scholar 

  71. M.S. Tohidi, A. Nezamzadeh-Ejhieh, A simple, cheap and effective methanol electrocatalyst based of Mn (II)-exchanged clinoptilolite nanoparticles. IJHE 41(21), 8881–8892 (2016)

    CAS  Google Scholar 

  72. M.S. Tohidi, A. Nezamzadeh-Ejhieh, A simple, cheap and effective methanol electrocatalyst based of Mn(II)-exchanged clinoptilolite nanoparticles. Int. J. Hydrogen Energy 41(21), 8881–8892 (2016)

    Article  CAS  Google Scholar 

  73. S. Azizi, S. Ghasemi, H. Yazdani-Sheldarrei, Synthesis of mesoporous silica (SBA-16) nanoparticles using silica extracted from stem cane ash and its application in electrocatalytic oxidation of methanol. Int. J. Hydrogen Energy 38(29), 12774–12785 (2013)

    Article  CAS  Google Scholar 

  74. A. El-Shafei, Electrocatalytic oxidation of methanol at a nickel hydroxide/glassy carbon modified electrode in alkaline medium. J. Electroanal. Chem. 471(2), 89–95 (1999)

    Article  CAS  Google Scholar 

  75. A.J. Bard, L.R. Faulkner, Fundamentals and applications, electrochemical methods 2, (2001)

  76. H. Luo, Z. Shi, N. Li, Z. Gu, Q. Zhuang, Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal. Chem. 73(5), 915–920 (2001)

    Article  CAS  PubMed  Google Scholar 

  77. Y. Yu, W. Su, M. Yuan, Y. Fu, J. Hu, Electrocatalytic oxidation of formaldehyde on nickel ion implanted-modified indium tin oxide electrode. J. Power Sources 286, 130–135 (2015)

    Article  CAS  Google Scholar 

  78. R. Ojani, J.B. Raoof, S.R.H. Zavvarmahalleh, Preparation of Ni/poly (1, 5-diaminonaphthalene)-modified carbon paste electrode; application in electrocatalytic oxidation of formaldehyde for fuel cells. J. Solid State Electrochem. 13(10), 1605–1611 (2009)

    Article  CAS  Google Scholar 

  79. J.-B. Raoof, R. Ojani, S. Abdi, S.R. Hosseini, Highly improved electrooxidation of formaldehyde on nickel/poly (o-toluidine)/Triton X-100 film modified carbon nanotube paste electrode. Int. J. Hydrogen Energy 37(3), 2137–2146 (2012)

    Article  CAS  Google Scholar 

  80. J.-B. Raoof, A. Omrani, R. Ojani, F. Monfared, Poly (N-methylaniline)/nickel modified carbon paste electrode as an efficient and cheep electrode for electrocatalytic oxidation of formaldehyde in alkaline medium. J. Electroanal. Chem. 633(1), 153–158 (2009)

    Article  CAS  Google Scholar 

  81. M. Revenga-Parra, T. García, E. Lorenzo, F. Pariente, Electrocatalytic oxidation of methanol and other short chain aliphatic alcohols on glassy carbon electrodes modified with conductive films derived from NiII-(N, N′-bis (2, 5-dihydroxybenzylidene)-1, 2-diaminobenzene). Sensors Actuators B: Chem. 130(2), 730–738 (2008)

    Article  CAS  Google Scholar 

  82. R. Baronia, J. Goel, V. Kataria, S. Basu, S.K. Singhal, Electro-oxidation of ethylene glycol on PtCo metal synergy for direct ethylene glycol fuel cells: reduced graphene oxide imparting a notable surface of action. Int. J. Hydrogen Energy 44(20), 10023–10032 (2019)

    Article  CAS  Google Scholar 

  83. S.R. Hosseini, J.-B. Raoof, S. Ghasemi, Z. Gholami, Synthesis of Pt–Cu/poly (o-Anisidine) nanocomposite onto carbon paste electrode and its application for methanol oxidation. Int. J. Hydrogen Energy 40(1), 292–302 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

We are grateful for the financial support from the Research Council of Babol Noshirvani University of Technology.

Author information

Authors and Affiliations

Authors

Contributions

S. K. Hassaninejad-Darzi conceived the presented idea. All authors developed the theory and performed the computations and also verified the analytical methods. S.K. Hassaninejad-Darzi investigated and supervised the findings of this work. All experiments were performed by S. Eshagh-Nimvari, supervised by S. K. Hassaninejad-Darzi. All authors discussed the results and contributed to the final manuscript. S. K. Hassaninejad-Darzi wrote the manuscript with support from S. Eshagh-Nimvari.

Corresponding author

Correspondence to Seyed Karim Hassaninejad-Darzi.

Ethics declarations

Ethics Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1695 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eshagh-Nimvari, S., Hassaninejad-Darzi, S.K. Electrocatalytic Performance of Nickel Hydroxide-Decorated Microporous Nanozeolite Beta-Modified Carbon Paste Electrode for Formaldehyde Oxidation. Electrocatalysis 14, 365–380 (2023). https://doi.org/10.1007/s12678-022-00799-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00799-3

Keywords

Navigation