Skip to main content
Log in

Facile fabrication of highly flexible graphene paper for photocatalytic reduction of 4-nitrophenol

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Freestanding paper-like materials prepared from chemically derived graphene have considerable potential as a carbon-based catalyst in high-performance flexible catalytic reaction. Herein, a highly flexible graphene paper (GP) assembled from graphene oxides (GOs) with the aid of polyacrylamide (PAA) and electroless deposition of gold nanoparticles (AuNPs) was prepared. In contrast to previous reports on GOs based on a flow-directed assembly of graphene sheets, this GOs/PAA/Au composite paper exhibited a highly wrinkled and disordered morphology. The resultant GOs/PAA/Au composite paper was applied as a catalytic material for the reduction of 4-nitrophenol and showed the favour separation, recovery and cyclic utilization properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raj M A and John S A 2015 RSC Adv. 5 4964; Kim M, Kim D Y and Kang Y 2015 RSC Adv. 5 3299

  2. Fang Y, Jiang G H, Wang R J, Wang Y, Sun X K, Wang S and Wang T 2012 Bull. Mater. Sci. 35 495; Xu Q H, Gong Y W, Fang Y, Jiang G H, Wang Y, Sun X K and Wang R J 2012 Bull. Mater. Sci. 35 795; Zhou Y, Xu F M, Jiang G H, Wang X H, Wang R J, Hu R B, Xi X G, Wang S, Wang T and Chen W X 2012 Powder Technol. 230 247

  3. Kuru C, Choi D, Choi C, Kim Y J and Jin S 2015 J. Nanosci. Nanotechnol. 15 2464; Xu G W, Lu R, Liu J, Hui R and Wu J Z 2014 Adv. Opt. Mater. 2 729; You J M, Kim D, Kim S K, Kim M S, Han H S and Jeon S 2013 Sens. Actuators B: Chem. 178 450

  4. El-Sayed I, Huang X H, Macheret F, Humstoe J O, Kramer R and El-Sayed M 2007 Technol. Cancer Res. Treat. 6 403

  5. Didiot C, Pons S, Kierren B, Fagot-Revurat Y and Malterre D 2007 Nat. Nanotechnol. 2 617

    Article  Google Scholar 

  6. Zhao J, Jensen L, Sung J, Zou S G, Schatz G C and Richard P 2007 J. Am. Chem. Soc. 129 7647

  7. Ji Z Y, Shen X P, Xu Y L, Zhu G X and Chen K M 2014 J. Colloid Interface Sci. 432 57

  8. Imada Y, Osaki M, Noguchi M, Maeda T, Fujiki M, Kawamorita S, Komiya N and Naota T 2015 ChemCatChem 7 99

  9. Ferentz M, Landau M V, Vidruk R and Herskowitz M 2015 Catal. Today 241 63

    Article  Google Scholar 

  10. Rej S, Chanda K, Chiu C Y and Huang M H 2014 Chem. Eur. J. 20 15991

    Article  Google Scholar 

  11. Zhang W, Liu B, Zhang, Bian G, Qi Y, Yang X and Li C 2015 Colloid Surf. A 466 210; Wang S, Zhang J, Yuan P, Sun Q, Jia Y, Yan W, Chen Z and Xu Q 2015 J. Mater. Sci. 50 1323

  12. Frydendal R, Busch M, Halck N B, Paoli E A, Krtil P, Chorkendorff I and Rossmeisl J 2015 ChemCatChem 7 149

    Article  Google Scholar 

  13. Lee J, Ahmed S R, Kim J, Suzuki T, Parmar K, Park S S, Lee J and Park E Y 2015 Biosens. Bioelectron. 64 311

    Article  Google Scholar 

  14. Nowinski A K, White A D, Keefe A J and Jiang S 2014 Langmuir 30 1864

    Article  Google Scholar 

  15. Hummers W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339; Park S and Ruoff R S 2009 Nat. Nanotechnol. 4 217

  16. Li C, Cai W, Cao B, Sun F, Li Y, Kan and Zhang L 2006 Adv. Funct. Mater. 16 83

    Article  Google Scholar 

  17. Raghavan N, Thangavel S and Venugopal G 2015 Mater. Sci. Semiconduct. Process. 30 321

    Article  Google Scholar 

  18. Bott-Neto J L, Garcia A C, Oliveira V L and Tremiliosi- Filho G 2014 J. Electroanal. Chem. 735 57

    Article  Google Scholar 

  19. MSarma T K, Chowdhury D, Paula A and Chattopadhyay A 2002 Chem. Commun. 10 1048

    Google Scholar 

  20. Sylvestre J, Poulin S, Kabashin A V, Sacher E, Meunier M and Luong J 2004 J. Phys. Chem. B 108 16864

    Article  Google Scholar 

  21. Maringa A, Mashazi P and Nyokong T 2015 J. Colloid Interface Sci. 440 151

    Article  Google Scholar 

  22. Kim D, Yang S J, Kim Y S, Jung H and Park C R 2012 Carbon 50 3229

    Article  Google Scholar 

  23. Allen G C, Hallam K R, Eastman J R, Graveling G J, Ragnarsdottir V K and Skuse D R 1998 Surf. Interface Anal. 26 518

    Article  Google Scholar 

  24. Yang S J, Kang J H, Jung H, Kim T and Park C R 2013 J. Mater. Chem. A 1 9427

    Article  Google Scholar 

  25. Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T and Ruoff R S 2007 Carbon 45 1558

    Article  Google Scholar 

  26. Tian J, Liu G, Guana C and Zhao H 2013 Polym. Chem. 4 1913

    Article  Google Scholar 

  27. Brezov V, Blakovi B, Surina I and Havlfnova B 1997 J. Photochem. Photobiol. A – Chem. 107 233

    Article  Google Scholar 

  28. Rashid H, Bhattacharjee R R, Kotal A and Mandal T K 2006 Langmuir 22 7141

    Article  Google Scholar 

  29. Vix-Guterl C, Frackowiak E, Jurewicz K, Friebe M, Parmentier J and Béguin F 2005 Carbon 43 1293

    Article  Google Scholar 

  30. Lu W, Ning R, Qin X, Zhang Y, Chang G, Liu S, Luo Y and Sun X 2011 J. Hazard. Mater. 197 320

    Article  Google Scholar 

  31. Harish S, Mathiyarasu J and Phani K 2009 Catal. Lett. 128 197

    Article  Google Scholar 

  32. Huang J, Vongehr S, Tang S, Lu H and Meng X 2010 J. Phys. Chem. C 114 15005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GUOHUA JIANG.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CHEN, H., JIANG, G., LI, L. et al. Facile fabrication of highly flexible graphene paper for photocatalytic reduction of 4-nitrophenol. Bull Mater Sci 38, 1457–1463 (2015). https://doi.org/10.1007/s12034-015-1037-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-1037-2

Keywords

Navigation