Skip to main content
Log in

Optical and magnetic properties of Yb ion-doped cobalt-based ZnO nanoparticles for DMS applications

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Well-crystalline structured ZnO nanoparticles with cobalt (Co) and ytterbium (Yb) multiple ions doping were successfully synthesized by the chemical precipitation technique. The structures, optical and magnetic properties of the samples were analysed with X-ray diffraction (XRD), UV–visible spectroscopy and magnetic measurements, respectively. In the XRD pattern of the pure ZnO and Yb co-doped samples, the formation of highly crystalline phase of pure ZnO was observed even at high Yb concentration. UV–vis spectra show a strong UV absorbance for all the samples with different absorbance maxima. Magnetic characterizations have shown that the sample with 1% Yb co-doped ZnO : Co nanoparticles exhibited a clear ferromagnetic (FM) behaviour at room temperature. The X-ray photoelectron spectral peaks for Yb 4f ions reveal Yb occupation of both Yb3+ as well as Yb2+ states. Hence, it can be confirmed that a clear FM behaviour at room temperature was exhibited by an imbalanced valence state of Yb that strongly interacted with the Co2+. When compared to the Co-doped ZnO, Yb co-doped ZnO exhibits a clear ferromagnetism at room temperature with high coercivity due to the contribution of both 3d and 4f exchange interaction with the host matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang C-W, Wang P-J and Li F 2011 Solid State Sci. 13 1608

    Article  Google Scholar 

  2. Tang G, Shi X, Huo C and Wang Z 2012 J. Ceram. 39 01329–6

    Google Scholar 

  3. Zhang Y G, Zhang G B and Wang Y X 2011 J. Appl. Phys. 109 063510

    Article  Google Scholar 

  4. Ip K, Frazier R M, Heo Y W, Norton D P, Abernathy C R and Pearton S J 2003 J. Vac. Sci. Technol. B 21 1476

    Article  Google Scholar 

  5. Wang Y, Song Y, Yin S, Yu G, Miao J and Yuan S L 2006 Mater. Sci. Eng. B 131 9

    Article  Google Scholar 

  6. Zhu T, Zhan W S, Wang W G and Xiao J Q 2006 Appl. Phys. Lett. 89 022508

    Article  Google Scholar 

  7. Park J H, Kim M G, Jang H M, Ryu S and Kim Y M 2004 Appl. Phys. Lett. 84

  8. Li B-B, Shen H-L, Zhang R, Xiu X-Q and Xie Z C 2007 Phys. Lett. 24 3473

    Google Scholar 

  9. Yang J H, Cheng Y, Liu Y, Ding X, Wang Y X, Zhang Y J and Liu H L 2009 Solid State Commun. 149 1164

    Article  Google Scholar 

  10. Snure M, Kumar D and Tiwari A 2009 Appl. Phys. Lett. 94 012510

    Article  Google Scholar 

  11. Mishra A K and Das D 2010 Mater. Sci. Eng. B 171 5

    Article  Google Scholar 

  12. Ahn G Y, Park S-I, Kim S J and Kim C S 2006 J. Magn. Magn. Mater. 304 c498

    Article  Google Scholar 

  13. Wang L M, Liao J-W, Peng Z-A and Lai J-H 2009 J. Electrochem. Soc. 156 H138

    Article  Google Scholar 

  14. Ferhat M, Zaoui A and Ahuja R 2009 Appl. Phys. Lett. 94 142502

    Article  Google Scholar 

  15. Xing G, Wang D, Yi J, Yang L, Gao M, He M, Yang J, Ding J, Sum T C and Wu T 2010 Appl. Phys. Lett. 96 112511

    Article  Google Scholar 

  16. Hsu H S and Huang J C A 2006 Appl. Phys. Lett. 88 242507

    Article  Google Scholar 

  17. Khalid M, Ziese M, Setzer A, Esquinazi P, Lorenz M, Hochmuth H, Grundmann M, Spemann D, Butz T, Brauer G, Anwand W, Fischer G, Adeagbo W A, Hergert W and Ernst A 2009 Phys. Rev. B 80 035331

    Article  Google Scholar 

  18. Banerjee S, Mandal M, Gayathri N and Sardar M 2007 Appl. Phys. Lett. 91 182501

    Article  Google Scholar 

  19. Xu Q, Schmidt H, Zhou S, Potzger K, Helm M, Hochmuth H, Lorenz M, Setzer A, Esquinazi P, Meinecke C and Grundmann M 2008 Appl. Phys. Lett. 92 082508

    Article  Google Scholar 

  20. Duan L B, Chu W G, Yu J, Wang Y C, Zhang L N, Liu G Y, Liang J K and Rao G D 2008 J. Magn. Magn. Mater. 320 1573

    Article  Google Scholar 

  21. Rao C N R and Deepak F L 2005 J. Mater. Chem. 15 573

    Article  Google Scholar 

  22. Hite J K, Frazier R M, Davies R P, Thaler G T, Abernathy C R, Pearton S J, Zavada J M, Brown E and Hömmerich U 2007 J. Electron. Mater. 36 391

    Article  Google Scholar 

  23. Zhou Y K, Choi S W, Emura S, Hasegawa S and Asahi H 2008 Appl. Phys. Lett. 92 062505

    Article  Google Scholar 

  24. Assadi M H N, Zhang Y B, Photongkam P and Li S 2011 J. Appl. Phys. 109 013909

    Article  Google Scholar 

  25. Subramanian M, Thakur P, Tanemura M, Hihara T, Ganesan V, Soga T, Chae K H, Jayavel R and Jimbo T 2010 J. Appl. Phys. 108 053904

    Article  Google Scholar 

  26. Ma X 2012 Thin Solid Films 520 5752

    Article  Google Scholar 

  27. Bantounas I, Goumri-Said S, Kanoun M B and Manchon A 2011 J. Appl. Phys. 109 083929

    Article  Google Scholar 

  28. Shi H, Zhang P, Li S-S and Xia J-B 2009 J. Appl. Phys. 106 023910

    Article  Google Scholar 

  29. Iqbal J et al 2009 J. Appl. Phys. 106 083515

    Article  Google Scholar 

  30. Diaz-Torres L A, De la Rosa E, Salas P and Desirena H 2005 Opt. Mater. 27 1305

    Article  Google Scholar 

  31. Jiang L, Xiao S, Yang X, Ding J and Dong K 2012 Appl. Phys. B 107 477

    Article  Google Scholar 

  32. Pal B and Giri P K 2010 J. Appl. Phys. 108 084322

    Article  Google Scholar 

  33. Roy B, Chakrabarthy S, Mondal O, Pal M and Dutta A 2012 Mater. Charact. 70 1

    Article  Google Scholar 

  34. Kabongo G L, Mhlongo G H, Mothudi B M, Hillie K T, Swart H C and Dhlamini M S 2014 Mater. Lett. 119 71

    Article  Google Scholar 

  35. Lang J, Han Q, Yang J, Li C, Li X, Yang L, Zhang Y, Gao M, Wang D and Cao J 2010 J. Appl. Phys. 107 074302

    Article  Google Scholar 

  36. Opera O, Vasile O R, Voicu G, Craciun L and Andronescu E 2012 Digest J. Nanomater. Biostruct. 7 1757

    Google Scholar 

  37. Liu Z W, Ong C K, Yu T and Shen Z X 2006 Appl. Phys. Lett. 88 053110

    Article  Google Scholar 

  38. Yan J, Gao M, Yang L, Zhang Y, Lang J, Wang D, Wanga Y, Liu H and Fan H 2008 Appl. Surf. Sci. 255 2646

    Article  Google Scholar 

  39. Paul S, Choudhury B and Choudhury A 2014 J. Alloys Compd. 601 201

    Article  Google Scholar 

  40. Teng X M, Fan H T, Pan S S, Ye C and Li G H 2006 J. Appl. Phys. 100 053507

    Article  Google Scholar 

  41. Yoon H, Wu J H, Min J H, Lee J S, Ju J-S and Kim Y K 2012 J. Appl. Phys. 111 07B523

    Google Scholar 

  42. Assadi M H N, Zhang Y, Zheng R-K, Ringer S P and Li S 2011 Nanoscale Res. Lett. 6 357

    Article  Google Scholar 

  43. Wang C C, Liu M, Man B Y, Chen C S and Jiang S Z 2012 AIP Adv. 2 012182

    Article  Google Scholar 

  44. Chen X G, Yang Y B, Wua R, Liu R, Kong X D, Han L, Yang Y C and Yang J B 2011 Physica B 406 1341

    Article  Google Scholar 

  45. Ohno Y 2008 J. Electron. Spectrosc. Relat. Phenom. 165 1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M PRIYA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

THANGEESWARI, T., PRIYA, M., VELMURUGAN, J. et al. Optical and magnetic properties of Yb ion-doped cobalt-based ZnO nanoparticles for DMS applications. Bull Mater Sci 38, 1389–1398 (2015). https://doi.org/10.1007/s12034-015-1026-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-1026-5

Keywords

Navigation