Skip to main content

Advertisement

Log in

Sol–gel synthesis of palladium nanoparticles supported on reduced graphene oxide: an active electrocatalyst for hydrogen evolution reaction

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this work, the synthesis and characterization of palladium nanoparticle-reduced graphene oxide hybrid (Pd–rGO) material is reported. Techniques of X-ray diffraction, transmission electron microscope (TEM), energy-dispersive X-ray, FT-IR spectroscopy, thermogravimetric analysis and cyclic voltammetry were used to characterize the structure and properties of the Pd–rGO. Results demonstrate the effect of Pd on the reduced GO. The average particle size of the Pd nanoparticles supported on rGO obtained from TEM is about 12–18 nm. Moreover, glassy carbon electrode (GCE) modified with palladium nanoparticle–graphene oxide hybrid (Pd–rGO/GCE) was prepared by casting of the Pd–rGO solution on GCE. The electrochemical and catalytic activity of the Pd–rGO/GCE was studied in 0.1 M H2SO4 solution. The Pd–rGO/GCE electrode exhibited remarkable electrocatalytic activity for the hydrogen evolution reaction (HER). At potential more negative than −0.4 V vs. Ag |AgCl |KCl3M, the current is mainly due to hydrogen evolution reaction. Finally, the kinetic parameters of hydrogen evolution reaction are also discussed on the Pd–rGO/GCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Wang Y, Liu J, Liu L and Sun D 2011 Nanoscale Res. Lett. 6 241

    Article  Google Scholar 

  2. Wang H and Hu Y H 2012 Energy Environ. Sci. 5 8182

    Article  Google Scholar 

  3. Sahoo N G, Pan Y, Li L and Chan S H 2012 Adv. Mater. 24 4203

    Article  Google Scholar 

  4. Xin Y, Liu J G, Zhou Y, Liu W, Gao J, Xie Y, Yin Y and Zou Z 2011 J. Power Sources 196 1012

    Article  Google Scholar 

  5. Luan V H, Tien H N, Hoa L T, Hien N T M, Oh E S, Chung J, Kim E J, Choi W M, Kong B S and Hur S H 2013 J. Mater. Chem. A 1 208

    Article  Google Scholar 

  6. Li S M, Wang Y S, Yang S Y, Liu C H, Chang K H, Tien H W, Wen N T, Ma C C M and Hu C C 2013 J. Power Sources 225 347

    Article  Google Scholar 

  7. Wu Y, Jenkins K A, Valdes-Garcia A, Farmer D B, Zhu Y, Bol A A, Dimitrakopoulos C, Zhu W, Xia F, Avouris P and Lin Y M 2012 Nano Lett. 12 3062

    Article  Google Scholar 

  8. Hill E W, Vijayaragahvan A and Novoselov K 2011 Sens. J. IEEE 11 3161

    Article  Google Scholar 

  9. Lin Y, Zhang K, Chen W, Liu Y, Geng Z, Zeng J, Pan N, Yan L, Wang X and Hou J G 2010 ACS Nano 4 3033

    Article  Google Scholar 

  10. Jin Y, Shen Y and Dong S 2004 J. Phys. Chem. B 108 8142

    Article  Google Scholar 

  11. Radhakrishnan C, Lo M K F, Warrier M V, Garcia-Garibay M A and Monbouquette H G 2006 Langmuir 22 5018

    Article  Google Scholar 

  12. Plass R, Pelet S, Krueger J and Gratzel M 2002 J. Phys. Chem. B 106 7578

    Article  Google Scholar 

  13. Blackburn J L, Selmarten D C and Nozik A J 2003 J. Phys. Chem. B 107 14154

    Article  Google Scholar 

  14. Zhou Y, Eck M, Men C, Rauscher F, Niyamakom P, Yilmaz S, Dumsch I, Allard S, Scherf U and Kruger M 2011 Sol. Energy Mater. Sol. Cells 95 3227

    Article  Google Scholar 

  15. Ren S, Chang L Y, Lim S K, Zhao J, Smith M, Zhao N, Bulović V, Bawendi M and Gradeĉak S 2011 Nano Lett. 11 3998

    Article  Google Scholar 

  16. Ginger D S and Greenham N C 2000 J. Appl. Phys. 87 1361

    Article  Google Scholar 

  17. Shang N, Papakonstantinou P, Wang P and Silva S R P 2010 J. Phys. Chem. C 37 15837

    Article  Google Scholar 

  18. Qiu J D, Wang G C, Liang R P, Xia X H and Yu H W 2011 J. Phys. Chem. C 31 15639

    Article  Google Scholar 

  19. Wang Z, Puls C P, Staley N E, Zhang Y, Todd A, Xu J, Howsare C A, Hollander M J, Robinson J A and Liu Y 2011 Physica E 44 521

    Article  Google Scholar 

  20. Gong F, Wang H and Wang Z S 2011 Phys. Chem. Chem. Phys. 13 17676

    Article  Google Scholar 

  21. Lu D, Zhang Y, Lin S, Wang L and Wang C 2011 Analyst 136 4447

    Article  Google Scholar 

  22. Zedan A F, Sappal S, Moussa S and El-Shall M S 2010 J. Phys. Chem. C 114 19920

    Article  Google Scholar 

  23. Wang Y, Yao H B, Wang X H and Yu S H 2010 J. Mater. Chem. 21 562

    Article  Google Scholar 

  24. Trasatti S 1991 Electrochim. Acta 36 225

    Article  Google Scholar 

  25. Jerkiewicz G and Zolfaghari A 1996 J. Electrochem. Soc. 143 1240

    Article  Google Scholar 

  26. Xu Y H, He G R and Wang X L 2003 Int. J. Hydrogen Energy 28 961

    Article  Google Scholar 

  27. Christmann K 1988 Surf. Sci. Rep. 9 1

    Article  Google Scholar 

  28. Rosalbino F, Delsante S, Borzone G and Angelini E 2007 J. Alloys Compd. 429 270

    Article  Google Scholar 

  29. Wu Y M, Li W S, Long X M, Wu F H, Chen H Y, Yan J H et al 2005 J. Power Sources 144 338

    Article  Google Scholar 

  30. Shibli S M A and Dilimon V S 2007 Int. J. Hydrogen Energy 32 1694

    Article  Google Scholar 

  31. Wu M, Shen K P, Wei Z, Song S and Nie M 2007 J. Power Sources 166 310

    Article  Google Scholar 

  32. Domınguez-Crespo M A, Plata-Torres M, Torres-Huerta A M, Arce-Estrada E M and Hallen-Lópeza J M 2005 Mater. Charact. 55 83

    Article  Google Scholar 

  33. Jafarian M, Azizi O, Gobal F and Mahjani M G 2007 Int. J. Hydrogen Energy 32 1686

    Article  Google Scholar 

  34. Karimi Shervedani R and Madram A R 2007 Electrochim. Acta 53 426

    Article  Google Scholar 

  35. Xu Y, Chen C, Wang X and Wang Q 2007 Int. J. Hydrogen Energy 32 537

    Article  Google Scholar 

  36. Hummers W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    Article  Google Scholar 

  37. Chandra S, Bag S, Das P, Bhattacharya D and Pramanik P 2012 Chem. Phys. Lett. 519 59

    Article  Google Scholar 

  38. Siamaki A R, Khder A E R S, Abdelsayed V, Samy El-Shall M and Frank Gupton B 2011 J. Catal. 279 163

    Article  Google Scholar 

  39. Kim S C, Heo M C and Hahn S H 2005 J. Kor. Phys. Soc. 47 700

    Google Scholar 

  40. Moon J, Park Zyung T and Kim D 2010 Sens. Actuators B 149 301

    Article  Google Scholar 

  41. Mardare D, Iftimie N, Crişan M, Răileanu M, Yildiz A, Coman T, Pomoni K and Vomvas A 2011 J. Non-Cryst. Solids 357 1774

    Article  Google Scholar 

  42. Arrigo R, Wrabetz S, Schuster M E, Wang D, Villa A, Rosenthal D, Girsgdies F, Weinberg G, Prati L, Schlögl R and Su D Sh 2012 Phys. Chem. Chem. Phys. 14 10523

    Article  Google Scholar 

  43. Song H M, Moosaa B A and Khashab N M 2012 J. Mater. Chem. 22 15953

    Article  Google Scholar 

  44. Mei Y, Lu Y, Polzer F and Ballauff M 2007 Chem. Mater. 19 1062

    Article  Google Scholar 

  45. Diculescu V C, Chiorcea-Paquim A M, Corduneanu O and Oliveira-Brett A M 2007 J. Solid State Electrochem. 11 887

    Article  Google Scholar 

  46. Li Y, Gao W, Ci L, Wang Ch and Ajayan P M 2010 Carbon 48 1124

    Article  Google Scholar 

  47. Chekin F, Bagheri S and Abd Hamid Sh B 2013 Sens. Actuators B 177 898

    Article  Google Scholar 

  48. Rajeswari J, Satyananda Kishore P, Viswanathan B and Kanthadai Varadarajan T. 2007 Nanoscale Res. Lett. 2 496

    Article  Google Scholar 

  49. Zheng H and Mathe M 2011 Int. J. Hydrogen Energy 36 1960

    Article  Google Scholar 

  50. Lee J K, Yi Y, Hye Lee J, Uhm S and Lee J 2009 Catal. Today 146 188

    Article  Google Scholar 

  51. Habibi B, Pournaghi-Azar M H, Razmi H and Abdolmohammad-Zadeh H 2008 Int. J. Hydrogen Energy 33 2668

    Article  Google Scholar 

  52. Raoof J B, Ojani R, Asghari Esfeden S and Rashid Nadimi S 2010 Int. J. Hydrogen Energy 35 3937

    Article  Google Scholar 

  53. Chekin F, Bagheri S and Abd Hamid Sh B 2013 J. Chin. Chem. Soc. 60 447

    Article  Google Scholar 

  54. Ojani R, Raoof J B and Hasheminejad E 2013 Int. J. Hydrogen Energy 38 92

    Article  Google Scholar 

  55. Jin Ham D, Phuruangrat A, Thongtem S and Sung Lee J 2010 Chem. Eng. J. 165 365

    Article  Google Scholar 

  56. Pierozynski B 2013 Int. J. Hydrogen Energy 38 7733

    Article  Google Scholar 

  57. Döner A, Tezcan F and Kardas G 2013 Int. J. Hydrogen Energy 38 3881

    Article  Google Scholar 

  58. Barber J, Morin S and Conway B E 1998 J. Electroanal. Chem. 446 125

    Article  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge the financial support by the Young Researchers and Elite Club, Ayatollah Amoli Branch, Islamic Azad University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FERESHTEH CHEKIN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CHEKIN, F. Sol–gel synthesis of palladium nanoparticles supported on reduced graphene oxide: an active electrocatalyst for hydrogen evolution reaction. Bull Mater Sci 38, 887–893 (2015). https://doi.org/10.1007/s12034-015-0954-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-0954-4

Keywords

Navigation