Skip to main content
Log in

Nanoscratch technique for aligning multiwalled carbon nanotubes synthesized by the arc discharge method in open air

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Horizontally aligned and densely packed multiwalled carbon nanotubes (MWCNTs) were synthesized in an open air, without the need for a controlled atmosphere, using a rotating cathode arc discharge method with the help of a metal scraper. The physical force exerted by the scraper results in in-situ alignment of MWCNTs along the direction of scrape marks. This strategy, which enables the alignment of nanotubes in a controlled fashion to any length and direction of interest, was examined to determine the force required to align a nanotube. A model is developed to understand the alignment process. Using the nanoscratch technique to mimic this strategy, and incorporating the data obtained from the nanoscratch technique into the model developed, the minimum force required to align a MWCNT, as well as the energy required to align a gram of nanotubes, has been estimated. The method demonstrated represents an economical approach for large-scale synthesis of aligned MWCNTs at low costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Iijima S 1991 Nature 354 56

    Article  Google Scholar 

  2. Joshi R, Engstler J, Nair P K, Haridoss P and Schneider J J 2008 Diam. Relat. Mater. 17 913

    Article  Google Scholar 

  3. Cheng H M, Li F, Su G, Pan H Y, He L L, Sun X and Dresselhaus M S 1998 Appl. Phys. Lett. 72 3282

    Article  Google Scholar 

  4. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tománek D, Fischer J E and Smalley R E 1996 Science 273 483

    Article  Google Scholar 

  5. Iijima S and Ichihashi T 1993 Nature 363 603

    Article  Google Scholar 

  6. Ando Y, Zhao X, Inoue S and Iijima S 2002 J. Cryst. Growth 237–239 1926

    Article  Google Scholar 

  7. Hong S and Myung S 2007 Nature 2 207

    Google Scholar 

  8. Choi W B, Bae E, Kang D, Chae S, Cheong B H, Ko J H, Lee E and Park W 2004 Nanotechnology 15 S512

    Article  Google Scholar 

  9. Ajayan P M, Stephan O, Colliex C and Trauth D 1994 Science 265 1212

    Article  Google Scholar 

  10. Ajayan P M 1995 Adv. Mater. 7 489

    Article  Google Scholar 

  11. Jin L, Bower C and Zhou O 1998 Appl. Phys. Lett. 73 1197

    Article  Google Scholar 

  12. Lee C J, Kim D W, Lee T J, Choi Y C, Park Y S, Lee Y H, Choi W B, Lee N S, Park G S and Kim J M 1999 Chem. Phys. Lett. 312 461

    Article  Google Scholar 

  13. Lu J, Miao J, Xu T, Yan B, Yu T and Shen Z 2011 Nanotechnology 22 265614

    Article  Google Scholar 

  14. Orofeo C M, Ago H, Ikuta T, Takahasi K and Tsuji M 2010 Nanoscale 2 1708

    Article  Google Scholar 

  15. Hedberg J, Dong L and Jiao J 2005 Appl. Phys. Lett. 86 1

    Article  Google Scholar 

  16. Correa-Duarte M A, Grzelczak M, Salgueiriño-Maceira V, Giersig M, Liz-Marzán L M, Farle M, Sierazdki K and Diaz R 2005 J. Phys. Chem. B 109 19060

    Article  Google Scholar 

  17. Joseph B A, Ramakrishnan S, Jain G and Haridoss P 2013 Carbon 55 185

    Article  Google Scholar 

  18. Lu L and Chen W 2010, ACS Nano 4 1042

    Article  Google Scholar 

  19. Harris P J F 2007 Carbon 45 229

    Article  Google Scholar 

  20. Gamaly E G and Ebbesen T W 1995 Phys. Rev. B 52 2083

    Article  Google Scholar 

  21. Hiura H, Ebbesen T W, Tanigaki K and Takahashi H 1993 Chem. Phys. Lett. 202 509

    Article  Google Scholar 

  22. Dresselhaus M S, Dresselhaus G, Saito R and Jorio A 2005 Phys. Rep. 409 47

    Article  Google Scholar 

  23. Reznik D, Olk C H, Neumann D A and Copley J R D 1995 Phys. Rev. B 52 116

    Article  Google Scholar 

  24. Kiang C H, Endo M, Ajayan P M, Dresselhaus G and Dresselhaus M S 1998 Phys. Rev. Lett. 81 1869

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PRATHAP HARIDOSS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BERKMANS, A.J., JAGANNATHAM, M. & HARIDOSS, P. Nanoscratch technique for aligning multiwalled carbon nanotubes synthesized by the arc discharge method in open air. Bull Mater Sci 38, 875–886 (2015). https://doi.org/10.1007/s12034-015-0948-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-0948-2

Keywords

Navigation