Skip to main content
Log in

First-principle study on the effect of high Ag–2N co-doping on the conductivity of ZnO

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The geometric structure, band structure (BS) and density of state (DOS) of pure and p-type co-doping wurtzite ZnO have been investigated by the first-principle ultrasoft pseudopotential method with the generalized gradient approximation. These structures induce fully occupied defect states above the valence-band maximum of doped ZnO. The calculation results show that in the range of high doping concentration, when the co-doping concentration is more than a certain value, the conductivity decreased with the increase of co-doping concentration of Ag–2N in ZnO. Our findings suggest that co-doping of Ag–2N could efficiently enhance the N dopant solubility and is likely to yield better p-type conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. Lide D R (ed) 2007–2008 CRC handbook of chemistry and physics (Boca Raton, FL : CRC Press) 88th ed

  2. Pearton S J, Norton D P, Ip K, Heo Y W and Steiner T 2004 J. Vac. Sci. Technol. B 22 932

    Article  Google Scholar 

  3. Zhang S B, Wei S -H and Zunger A 2001 Phys. Rev. B 63 075205

    Article  Google Scholar 

  4. Yan Y F, Al-Jassim M M and Wei S H 2006 Appl. Phys. Lett. 89 181912

    Article  Google Scholar 

  5. Vaithianathan V, Lee B T and Kim S S 2005 Appl. Phys. Lett. 86 062101

    Article  Google Scholar 

  6. Wang P, Chen N and Yin Z G 2006 Appl. Phys. Lett. 88 152102

    Article  Google Scholar 

  7. Kang H S, Ahn B D, Kim J H, Kim G H, Lim S H, Chang H W and Lee S Y 2006 Appl. Phys. Lett. 88 202108

    Article  Google Scholar 

  8. Park C H, Zhang S B and Wei S -H 2002 Phys. Rev. B 66 073202

    Article  Google Scholar 

  9. Wei S H 2004 Comput. Mater. Sci. 30 337

    Article  Google Scholar 

  10. Chen K, Fan G H, Zhang Y and Ding S F 2008 Acta Phys. Chim. Sin. 24 61

    Google Scholar 

  11. Guo X L, Tabata H and Kawai T 2001 J. Cryst. Growth 223 135

    Article  Google Scholar 

  12. Zuo C Y, Wen J and Bai Y L 2010 Chin. Phys. B 19 047101

    Article  Google Scholar 

  13. Bian J M, Li X M and Zhang C Y 2004 Appl. Phys. Lett. 85 4070

    Article  Google Scholar 

  14. Duan X M, Stampfl C, Bilek M M M and McKenzie D R 2009 Phys. Rev. B 79 235208

    Article  Google Scholar 

  15. Wan Q X, Xiong Z H, Dai J N, Rao J P and Jiang F Y 2008 Opt. Mater. 30 817

    Article  Google Scholar 

  16. He H Y, Hu J and Pan B C 2009 J. Chem. Phys. 130 (c) 204516

    Article  Google Scholar 

  17. Gelves G A, Lin B, Sundararaj U and Haber J A 2006 Adv. Funct. Mater. 16 2423

    Article  Google Scholar 

  18. Delley B 1990 J. Chem. Phys. 92 508

    Article  Google Scholar 

  19. Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Article  Google Scholar 

  20. Davidson E R and Chakravorty S 1992 Theor. Chim. Acta 83 319

    Article  Google Scholar 

  21. Wang B L, Zhao J J, Chen X S, Shi D and Wang G H 2006 Nanotechnology 17 3178

    Article  Google Scholar 

  22. Segall M D, Shah R, Pickard C J and Payne M C 1996 Phys. Rev. B 54 16317

    Article  Google Scholar 

  23. Özgür Ú, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301

    Article  Google Scholar 

  24. Hou Q Y, Li J J, Zhao C W, Ying C and Z. Y 2011 Physica B 406 1956

    Article  Google Scholar 

  25. Abrahams S C and Bemstein J L 1969 Acta Crystallogr. B 25 1233

    Article  Google Scholar 

  26. He C, Qi L, Zhang W X and Pan H 2011 Appl. Phys. Lett. 99 073105

    Article  Google Scholar 

  27. Zuo C Y, Wen J and Bai Y L 2010 Chin. Phys. B 19 047101

    Article  Google Scholar 

  28. Vanderbilt D 1990 Phys. Rev. B 41 7892

    Article  Google Scholar 

  29. Huang K and Han N 1985 Solid state physics (Beijing : Higher Education Press)

    Google Scholar 

Download references

Acknowledgements

We acknowledge supports by National Key Basic Research and Development Program (Grant nos 2010CB631001 and 2012CB619400), National Natural Science Foundation of China (NSFC, Grant nos 51101117 and 51301020), Ph.D. Programs Foundation of Ministry of Education of China (Grant no. 20110201120002), the Natural Science Basic Research Plan in Shaanxi Province of China (2011JQ6001) and the Fundamental Research Funds for the Central Universities and State Key Laboratory for Mechanical Behavior of Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CHENG HE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ZHANG, W., BAI, Y., HE, C. et al. First-principle study on the effect of high Ag–2N co-doping on the conductivity of ZnO. Bull Mater Sci 38, 747–751 (2015). https://doi.org/10.1007/s12034-015-0897-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-0897-9

Keywords

Navigation