Skip to main content

Advertisement

Log in

Synthesis of crosslinked poly(styrene-co-divinylbenzene-co-sulfopropyl methacrylate) nanoparticles by emulsion polymerization: Tuning the particle size and surface charge density

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

We have synthesized highly charged, crosslinked poly (styrene-co-divinylbenzene-co-sulfopropyl methacrylate) copolymer colloidal particles using emulsion polymerization. The effects of concentration of the emulsifier and the initiator on the particle size and the charge density of the colloidal particles are studied. Colloidal particle size is highly dependent upon the concentration of the emulsifier and the initiator. The colloidal particle diameter decreases with increasing concentration of the emulsifier and increases with increasing concentration of the initiator in the polymerization mixture. Number of particles, surface charge density and charges per particle are also functions of both the emulsifier and the initiator concentration. The surface charge density and the number of charges per sphere increase with increasing particle diameter. These copolymer colloid particles self assemble readily and diffract visible light. Polymer hydrogel imbibed with these colloids shows the light diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Jana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arunbabu, D., Hazarika, M., Naik, S. et al. Synthesis of crosslinked poly(styrene-co-divinylbenzene-co-sulfopropyl methacrylate) nanoparticles by emulsion polymerization: Tuning the particle size and surface charge density. Bull Mater Sci 32, 633–641 (2009). https://doi.org/10.1007/s12034-009-0098-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-009-0098-5

Keywords

Navigation