Skip to main content

Advertisement

Log in

Recent Insights into the Roles of PEST‐Containing Nuclear Protein

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

PEST-containing nuclear protein (PCNP), a short-lived small nuclear protein with 178 amino acids, is a nuclear protein containing two PEST sequences. PCNP is highly expressed in several malignant tumors such as cervical cancer, rectal cancer, and lung cancer. It is also associated with cell cycle regulation and the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and Wnt signaling pathways during tumor growth. The present article discuss how PCNP regulates the PI3K/AKT/mTOR and Wnt signaling pathways and related proteins, and the ubiquitination of PCNP regulates tumor cell cycle as well as the progress of the application of PCNP in the pathophysiology and treatment of colon cancer, human ovarian cancer, thyroid cancer, lung adenocarcinoma and oral squamous cell carcinoma. The main relevant articles were retrieved from PubMed, with keywords such as PEST-containing nuclear protein (PCNP), cancer (tumor), and signaling pathways as inclusion/exclusion criteria. Relevant references has been included and cited in the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data availability are not applicable to this review article.

References

  1. Sarfraz, M., Afzal, A., Khattak, S., Saddozai, U. A. K., Li, H. M., Zhang, Q. Q., et al. (2021). Multifaceted behavior of PEST sequence enriched nuclear proteins in cancer biology and role in gene therapy. Journal of Cellular Physiology, 236(1), 1658–1676. https://doi.org/10.1002/jcp.30011

    Article  CAS  PubMed  Google Scholar 

  2. Mohamed, O. A. A., Tesen, H. S., Hany, M., Sherif, A., Abdelwahab, M. M., & Elnaggar, M. H. (2023). The role of hypoxia on prostate cancer progression and metastasis. Molecular Biology Reports, 50(1), 3873–3884. https://doi.org/10.1007/s11033-023-08251-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Itkonen, H. M., Minner, S., Guldvik, I. J., Sandmann, M. J., Tsourlakis, M. C., Berge, V., et al. (2013). O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells. Cancer Research, 73(1), 5277–5287. https://doi.org/10.1158/0008-5472.Can-13-0549

    Article  CAS  PubMed  Google Scholar 

  4. Rechsteiner, M. (1990). PEST sequences are signals for rapid intracellular proteolysis. Semin Cell Biol., 1(1), 433–40.

    CAS  PubMed  Google Scholar 

  5. Rechsteiner, M., & Rogers, S. W. (1996). PEST sequences and regulation by proteolysis. Trends in Biochemical Sciences, 21(1), 267–271.

    Article  CAS  PubMed  Google Scholar 

  6. Mori, T., Li, Y., Hata, H., Ono, K., & Kochi, H. (2002). NIRF, a novel RING finger protein, is involved in cell-cycle regulation. Biochemical and Biophysical Research Communications, 296(1), 530–536. https://doi.org/10.1016/s0006-291x(02)00890-2

    Article  CAS  PubMed  Google Scholar 

  7. Khan, N. H., Chen, H. J., Fan, Y., Surfaraz, M., Ahammad, M. F., Qin, Y. Z., et al. (2022). Biology of PEST-containing nuclear protein: A potential molecular target for cancer research. Front Oncol., 12(1), 784597. https://doi.org/10.3389/fonc.2022.784597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fang, T., Jiao, Z., You, Y., Cao, J., Wang, C., Liu, J., et al. (2023). Lenvatinib inhibited HCC cell migration and invasion through regulating the transcription and ubiquitination of UHRF1 and DNMT1. Biochemical Pharmacology, 210(1), 115489. https://doi.org/10.1016/j.bcp.2023.115489

    Article  CAS  PubMed  Google Scholar 

  9. Qian, G., Hu, B., Zhou, D., Xuan, Y., Bai, L., & Duan, C. (2015). NIRF, a novel ubiquitin ligase, inhibits hepatitis B virus replication through effect on HBV core protein and H3 histones. DNA Cell Biology, 34(1), 327–332. https://doi.org/10.1089/dna.2014.2714

    Article  CAS  PubMed  Google Scholar 

  10. Li, Y., Mori, T., Hata, H., Homma, Y., & Kochi, H. (2004). NIRF induces G1 arrest and associates with Cdk2. Biochemical and Biophysical Research Communications, 319(1), 464–468. https://doi.org/10.1016/j.bbrc.2004.04.190

    Article  CAS  PubMed  Google Scholar 

  11. Fu, H., Xing, F., Lv, Y., Zeng, B., You, P., & Liu, J. (2018). ICBP90 mediates Notch signaling to facilitate human hepatocellular carcinoma growth. Tissue Cell., 54(1), 65–71. https://doi.org/10.1016/j.tice.2018.08.004

    Article  CAS  PubMed  Google Scholar 

  12. Mousli, M., Hopfner, R., Abbady, A. Q., Monté, D., Jeanblanc, M., Oudet, P., et al. (2003). ICBP90 belongs to a new family of proteins with an expression that is deregulated in cancer cells. British Journal of Cancer, 89(1), 120–127. https://doi.org/10.1038/sj.bjc.6601068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ni, X., Li, Z., Li, X., Zhang, X., Bai, G., Liu, Y., et al. (2022). Socioeconomic inequalities in cancer incidence and access to health services among children and adolescents in China: A cross-sectional study. Lancet., 400(1), 1020–1032. https://doi.org/10.1016/s0140-6736(22)01541-0

    Article  PubMed  Google Scholar 

  14. Wu, D. D., Gao, Y. R., Li, T., Wang, D. Y., Lu, D., Liu, S. Y., et al. (2018). PEST-containing nuclear protein mediates the proliferation, migration, and invasion of human neuroblastoma cells through MAPK and PI3K/AKT/mTOR signaling pathways. BMC Cancer., 18(1), 499. https://doi.org/10.1186/s12885-018-4391-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dong, P., Fu, H., Chen, L., Zhang, S., Zhang, X., Li, H., et al. (2020). PCNP promotes ovarian cancer progression by accelerating β-catenin nuclear accumulation and triggering EMT transition. Journal of Cellular and Molecular Medicine, 24(1), 8221–8235. https://doi.org/10.1111/jcmm.15491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, D. Y., Hong, Y., Chen, Y. G., Dong, P. Z., Liu, S. Y., Gao, Y. R., et al. (2019). PEST-containing nuclear protein regulates cell proliferation, migration, and invasion in lung adenocarcinoma. Oncogenesis., 8(1), 22. https://doi.org/10.1038/s41389-019-0132-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mori, T., Li, Y., Hata, H., & Kochi, H. (2004). NIRF is a ubiquitin ligase that is capable of ubiquitinating PCNP, a PEST-containing nuclear protein. FEBS Letters, 557(1), 209–214. https://doi.org/10.1016/s0014-5793(03)01495-9

    Article  CAS  PubMed  Google Scholar 

  18. Mansour, M. A. (2018). Ubiquitination: Friend and foe in cancer. The International Journal of Biochemistry & Cell Biology, 101(1), 80–93. https://doi.org/10.1016/j.biocel.2018.06.001

    Article  CAS  Google Scholar 

  19. Popovic, D., Vucic, D., & Dikic, I. (2014). Ubiquitination in disease pathogenesis and treatment. Nature Medicine, 20(1), 1242–1253. https://doi.org/10.1038/nm.3739

    Article  CAS  PubMed  Google Scholar 

  20. Chen, Z., & Lu, W. (2015). Roles of ubiquitination and SUMOylation on prostate cancer: Mechanisms and clinical implications. International Journal of Molecular Sciences, 16(1), 4560–4580. https://doi.org/10.3390/ijms16034560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bassermann, F., Eichner, R., & Pagano, M. (2014). The ubiquitin proteasome system—implications for cell cycle control and the targeted treatment of cancer. Biochim Biophys Acta., 1843(1), 150–162. https://doi.org/10.1016/j.bbamcr.2013.02.028

    Article  CAS  PubMed  Google Scholar 

  22. Obaya, A. J., & Sedivy, J. M. (2002). Regulation of cyclin-Cdk activity in mammalian cells. Cellular and Molecular Life Sciences (CMLS), 59(1), 126–142. https://doi.org/10.1007/s00018-002-8410-1

    Article  CAS  PubMed  Google Scholar 

  23. Kölling, R., & Losko, S. (1997). The linker region of the ABC-transporter Ste6 mediates ubiquitination and fast turnover of the protein. The EMBO Journal., 16(1), 2251–2261. https://doi.org/10.1093/emboj/16.9.2251

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hicke, L., & Riezman, H. (1996). Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell., 84(1), 277–287. https://doi.org/10.1016/s0092-8674(00)80982-4

    Article  CAS  PubMed  Google Scholar 

  25. Wang, F., Zhang, P., Ma, Y., Yang, J., Moyer, M. P., Shi, C., et al. (2012). NIRF is frequently upregulated in colorectal cancer and its oncogenicity can be suppressed by let-7a microRNA. Cancer Lett., 314(1), 223–231. https://doi.org/10.1016/j.canlet.2011.09.033

    Article  CAS  PubMed  Google Scholar 

  26. Tewari, D., Patni, P., Bishayee, A., Sah, A. N., & Bishayee, A. (2022). Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Seminars in Cancer Biology, 80(1), 1–17. https://doi.org/10.1016/j.semcancer.2019.12.008

    Article  PubMed  Google Scholar 

  27. Mohite, R., & Doshi, G. (2023). Elucidation of the role of the epigenetic regulatory mechanisms of PI3K/AKT/mtor signaling pathway in human malignancies. Current Cancer Drug Targets. https://doi.org/10.2174/1568009623666230801094826

    Article  Google Scholar 

  28. Ahmad, I., Hoque, M., Alam, S. S. M., Zughaibi, T. A., & Tabrez, S. (2023). Curcumin and plumbagin synergistically target the PI3K/Akt/mTOR Pathway: A prospective role in cancer treatment. Int J Mol Sci. https://doi.org/10.3390/ijms24076651

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jiang, B. H., & Liu, L. Z. (2008). PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1784(1), 150–158. https://doi.org/10.1016/j.bbapap.2007.09.008

    Article  CAS  PubMed  Google Scholar 

  30. Xu, F., Na, L., Li, Y., & Chen, L. (2020). Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell & Bioscience, 10(1), 54. https://doi.org/10.1186/s13578-020-00416-0

    Article  CAS  Google Scholar 

  31. Ersahin, T., Tuncbag, N., & Cetin-Atalay, R. (2015). The PI3K/AKT/mTOR interactive pathway. Molecular BioSystems, 11(1), 1946–1954. https://doi.org/10.1039/c5mb00101c

    Article  CAS  PubMed  Google Scholar 

  32. Shi, N., Yu, H., & Chen, T. (2019). Inhibition of esophageal cancer growth through the suppression of PI3K/AKT/mTOR signaling pathway. OncoTargets and Therapy, 12(1), 7637–7647. https://doi.org/10.2147/ott.S205457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Trotman, L. C., Wang, X., Alimonti, A., Chen, Z., Teruya-Feldstein, J., Yang, H., et al. (2007). Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell., 128(1), 141–156. https://doi.org/10.1016/j.cell.2006.11.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang, Y., Luo, J., Zhou, Y., Zang, H., Yang, Y., Liu, S., et al. (2022). Overexpressed p-S6 associates with lymph node metastasis and predicts poor prognosis in non-small cell lung cancer. BMC Cancer., 22(1), 564. https://doi.org/10.1186/s12885-022-09664-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jiang, B. H., & Liu, L. Z. (2009). PI3K/PTEN signaling in angiogenesis and tumorigenesis. Advanced Cancer Research, 102(1), 19–65. https://doi.org/10.1016/s0065-230x(09)02002-8

    Article  CAS  Google Scholar 

  36. Yang, J., Pi, C., & Wang, G. (2018). Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. Biomedicine & Pharmacotherapy, 103(1), 699–707. https://doi.org/10.1016/j.biopha.2018.04.072

    Article  CAS  Google Scholar 

  37. Aggarwal, S., John, S., Sapra, L., Sharma, S. C., & Das, S. N. (2019). Targeted disruption of PI3K/Akt/mTOR signaling pathway, via PI3K inhibitors, promotes growth inhibitory effects in oral cancer cells. Cancer Chemother Pharmacol., 83(1), 451–461. https://doi.org/10.1007/s00280-018-3746-x

    Article  CAS  PubMed  Google Scholar 

  38. Liu, S., Gao, W., Lu, Y., Zhou, Q., Su, R., Hasegawa, T., et al. (2022). As a novel tumor suppressor, LHPP promotes apoptosis by inhibiting the PI3K/AKT signaling pathway in oral squamous cell carcinoma. International Journal of Biological Sciences, 18(1), 491–506. https://doi.org/10.7150/ijbs.66841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, X., & Chen, Q. (2021). FERMT1 knockdown inhibits oral squamous cell carcinoma cell epithelial-mesenchymal transition by inactivating the PI3K/AKT signaling pathway. BMC Oral Health., 21(1), 598. https://doi.org/10.1186/s12903-021-01955-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, W., Wang, J., Zhang, C., Bao, Z., & Wu, L. (2022). Curcumin nanoemulsions inhibit oral squamous cell carcinoma cell proliferation by PI3K/Akt/mTOR suppression and miR-199a upregulation: A preliminary study. Oral disease. https://doi.org/10.1111/odi.14271

    Article  Google Scholar 

  41. Yoon, J. H., Shin, J. W., Pham, T. H., Choi, Y. J., Ryu, H. W., Oh, S. R., et al. (2020). Methyl lucidone induces apoptosis and G(2)/M phase arrest via the PI3K/Akt/NF-κB pathway in ovarian cancer cells. Pharmaceutical Biology, 58(1), 51–59. https://doi.org/10.1080/13880209.2019.1701044

    Article  CAS  PubMed  Google Scholar 

  42. Luo, G., Zhou, J., Li, G., Hu, N., Xia, X., & Zhou, H. (2021). Retracted: Ferruginol diterpenoid selectively inhibits human thyroid cancer growth by inducing mitochondrial dependent apoptosis, endogenous reactive oxygen species (ROS) production, mitochondrial membrane potential loss and suppression of mitogen-activated protein kinase (MAPK) and PI3K/AKT signaling pathways. Medical Science Monitor, 27(1), e932341. https://doi.org/10.12659/msm.932341

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang, Y., Xu, J., Alarifi, S., & Wang, H. (2021). Kirenol inhibited the cell survival and induced apoptosis in human thyroid cancer cells by altering PI3K/AKT and MAP kinase signaling pathways. Environmental Toxicology, 36(1), 811–820. https://doi.org/10.1002/tox.23083

    Article  CAS  PubMed  Google Scholar 

  44. Ghahhari, N. M., & Babashah, S. (2015). Interplay between microRNAs and WNT/β-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer. European Journal of Cancer, 51(1), 1638–1649. https://doi.org/10.1016/j.ejca.2015.04.021

    Article  CAS  PubMed  Google Scholar 

  45. Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell., 127(1), 469–480. https://doi.org/10.1016/j.cell.2006.10.018

    Article  CAS  PubMed  Google Scholar 

  46. Cheng, X., Xu, X., Chen, D., Zhao, F., & Wang, W. (2019). Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomedicine & Pharmacotherapy, 110(1), 473–481. https://doi.org/10.1016/j.biopha.2018.11.082

    Article  CAS  Google Scholar 

  47. Degirmenci, B., Dincer, C., Demirel, H. C., Berkova, L., Moor, A. E., Kahraman, A., et al. (2021). Epithelial Wnt secretion drives the progression of inflammation-induced colon carcinoma in murine model. iScience., 24(1), 103369. https://doi.org/10.1016/j.isci.2021.103369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hall, C. L., Kang, S., MacDougald, O. A., & Keller, E. T. (2006). Role of Wnts in prostate cancer bone metastases. Journal of Cellular Biochemistry, 97(1), 661–672. https://doi.org/10.1002/jcb.20735

    Article  CAS  PubMed  Google Scholar 

  49. Hall, C. L., & Keller, E. T. (2006). The role of Wnts in bone metastases. Cancer and Metastasis Reviews, 25(1), 551–558. https://doi.org/10.1007/s10555-006-9022-2

    Article  CAS  PubMed  Google Scholar 

  50. Barbolina, M. V., Burkhalter, R. J., & Stack, M. S. (2011). Diverse mechanisms for activation of Wnt signalling in the ovarian tumour microenvironment. Biochemical Journal., 437(1), 1–12. https://doi.org/10.1042/bj20110112

    Article  CAS  PubMed  Google Scholar 

  51. Kramer, E. D., Tzetzo, S. L., Colligan, S. H., Hensen, M. L., Brackett, C. M., Clausen, B. E., et al. (2023). β-Catenin signaling in alveolar macrophages enhances lung metastasis through a TNF-dependent mechanism. JCI Insight. https://doi.org/10.1172/jci.insight.160978

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhou, Y., Xu, J., Luo, H., Meng, X., Chen, M., & Zhu, D. (2022). Wnt signaling pathway in cancer immunotherapy. Cancer Letters, 525(1), 84–96. https://doi.org/10.1016/j.canlet.2021.10.034

    Article  CAS  PubMed  Google Scholar 

  53. Liu, J., Xiao, Q., Xiao, J., Niu, C., Li, Y., Zhang, X., et al. (2022). Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduction and Targeted Therapy, 7(1), 3. https://doi.org/10.1038/s41392-021-00762-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dooling, L. J., Andrechak, J. C., Hayes, B. H., Kadu, S., Zhang, W., Pan, R., et al. (2023). Cooperative phagocytosis of solid tumours by macrophages triggers durable anti-tumour responses. Nature Biomedical Engineering. https://doi.org/10.1038/s41551-023-01031-3

    Article  PubMed  Google Scholar 

  55. Chen, T., You, Y., Jiang, H., & Wang, Z. Z. (2017). Epithelial-mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis. Journal of Cellular Physiology, 232(1), 3261–3272. https://doi.org/10.1002/jcp.25797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, Y., & Weinberg, R. A. (2018). Epithelial-to-mesenchymal transition in cancer: Complexity and opportunities. Frontiers of Medicine, 12(1), 361–373. https://doi.org/10.1007/s11684-018-0656-6

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yu, F., Yu, C., Li, F., Zuo, Y., Wang, Y., Yao, L., et al. (2021). Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduction and Targeted Therapy, 6(1), 307. https://doi.org/10.1038/s41392-021-00701-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Arend, R. C., Londoño-Joshi, A. I., Straughn, J. M., Jr., & Buchsbaum, D. J. (2013). The Wnt/β-catenin pathway in ovarian cancer: A review. Gynecologic Oncology, 131(1), 772–779. https://doi.org/10.1016/j.ygyno.2013.09.034

    Article  CAS  PubMed  Google Scholar 

  59. Chen, Y. G., Liu, H. X., Hong, Y., Dong, P. Z., Liu, S. Y., Gao, Y. R., et al. (2022). PCNP is a novel regulator of proliferation, migration, and invasion in human thyroid cancer. International Journal of Biological Sciences, 18(1), 3605–3620. https://doi.org/10.7150/ijbs.70394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mori, T., Ikeda, D. D., Fukushima, T., Takenoshita, S., & Kochi, H. (2011). NIRF constitutes a nodal point in the cell cycle network and is a candidate tumor suppressor. Cell Cycle., 10(1), 3284–3299. https://doi.org/10.4161/cc.10.19.17176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mori, T., Ikeda, D. D., Yamaguchi, Y., & Unoki, M. (2012). NIRF/UHRF2 occupies a central position in the cell cycle network and allows coupling with the epigenetic landscape. FEBS Letters, 586(1), 1570–1583. https://doi.org/10.1016/j.febslet.2012.04.038

    Article  CAS  PubMed  Google Scholar 

  62. van Noort, V., Snel, B., & Huynen, M. A. (2003). Predicting gene function by conserved co-expression. Trends in Genetics, 19(1), 238–242. https://doi.org/10.1016/s0168-9525(03)00056-8

    Article  Google Scholar 

  63. Saris, C. G., Horvath, S., van Vught, P. W., van Es, M. A., Blauw, H. M., Fuller, T. F., et al. (2009). Weighted gene co-expression network analysis of the peripheral blood from amyotrophic lateral sclerosis patients. BMC Genomics., 10(1), 405. https://doi.org/10.1186/1471-2164-10-405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, Z., Zheng, W., Wang, Z., Zeng, Z., Zhan, H., Li, C., et al. (2013). A transgenic zebrafish liver tumor model with inducible Myc expression reveals conserved Myc signatures with mammalian liver tumors. Disease Models & Mechanisms., 6(1), 414–423. https://doi.org/10.1242/dmm.010462

    Article  CAS  Google Scholar 

  65. de Jong, S., Newhouse, S. J., Patel, H., Lee, S., Dempster, D., Curtis, C., et al. (2016). Immune signatures and disorder-specific patterns in a cross-disorder gene expression analysis. British Journal of Psychiatry., 209(1), 202–208. https://doi.org/10.1192/bjp.bp.115.175471

    Article  Google Scholar 

  66. Kim, S., Westphal, V., Srikrishna, G., Mehta, D. P., Peterson, S., Filiano, J., et al. (2000). Dolichol phosphate mannose synthase (DPM1) mutations define congenital disorder of glycosylation Ie (CDG-Ie). Journal of Clinical Investigation., 105(1), 191–198. https://doi.org/10.1172/jci7302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bard, J. A. M., Goodall, E. A., Greene, E. R., Jonsson, E., Dong, K. C., & Martin, A. (2018). Structure and function of the 26S proteasome. Annual Review of Biochemistry, 87(1), 697–724. https://doi.org/10.1146/annurev-biochem-062917-011931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ng, C. L., Oresic, K., & Tortorella, D. (2010). TRAM1 is involved in disposal of ER membrane degradation substrates. Experimental Cell Research, 316(1), 2113–2122. https://doi.org/10.1016/j.yexcr.2010.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang, H., Lee, H. W., Deng, Y., Lu, Z., Hsu, P. C., Liu, Y., et al. (2015). Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nature Communications, 6(1), 7261. https://doi.org/10.1038/ncomms8261

    Article  CAS  PubMed  Google Scholar 

  70. Hu, J., Zhang, L., Mei, Z., Jiang, Y., Yi, Y., Liu, L., et al. (2018). Interaction of E3 ubiquitin ligase MARCH7 with long noncoding RNA MALAT1 and autophagy-related protein ATG7 promotes autophagy and invasion in ovarian cancer. Cellular Physiology and Biochemistry, 47(1), 654–666. https://doi.org/10.1159/000490020

    Article  CAS  PubMed  Google Scholar 

  71. Zhao, K., Yang, Y., Zhang, G., Wang, C., Wang, D., Wu, M., et al. (2018). Regulation of the Mdm2-p53 pathway by the ubiquitin E3 ligase MARCH7. EMBO Reports., 19(1), 305–319. https://doi.org/10.15252/embr.201744465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Demirel, D., Ozkaya, F. C., Ebrahim, W., Sokullu, E., & Sahin, I. D. (2023). Aspergillus carneus metabolite averufanin induced cell cycle arrest and apoptotic cell death on cancer cell lines via inducing DNA damage. Scientific Reports, 13(1), 6460. https://doi.org/10.1038/s41598-023-30775-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roslan, N. H., Makpol, S., & Mohd Yusof, Y. A. (2019). A review on dietary intervention in obesity associated colon cancer. Asian Pacific Journal of Cancer Prevention, 20(1), 1309–1319. https://doi.org/10.31557/apjcp.2019.20.5.1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu, K., Lai, M., Wang, S., Zheng, K., Xie, S., & Wang, X. (2020). Construction of a CXC chemokine-based prediction model for the prognosis of colon cancer. BioMed Research International, 1, 6107865. https://doi.org/10.1155/2020/6107865

    Article  CAS  Google Scholar 

  75. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians., 68(1), 394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  76. Liu, F., Wang, X. D., & Du, S. Y. (2020). Production of gold/silver doped carbon nanocomposites for effective photothermal therapy of colon cancer. Scientific Reports., 10(1), 7618. https://doi.org/10.1038/s41598-020-64225-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Verhoeven, Y., Tilborghs, S., Jacobs, J., De Waele, J., Quatannens, D., Deben, C., et al. (2020). The potential and controversy of targeting STAT family members in cancer. Seminars in Cancer Biology, 60(1), 41–56. https://doi.org/10.1016/j.semcancer.2019.10.002

    Article  CAS  PubMed  Google Scholar 

  78. Tuli, H. S., Sak, K., Iqubal, A., Garg, V. K., Varol, M., Sharma, U., et al. (2022). STAT signaling as a target for intervention: From cancer inflammation and angiogenesis to non-coding RNAs modulation. Molecular Biology Reports, 49(1), 8987–8999. https://doi.org/10.1007/s11033-022-07399-w

    Article  CAS  PubMed  Google Scholar 

  79. Slattery, M. L., Lundgreen, A., Kadlubar, S. A., Bondurant, K. L., & Wolff, R. K. (2013). JAK/STAT/SOCS-signaling pathway and colon and rectal cancer. Mol Carcinog., 52(1), 155–166. https://doi.org/10.1002/mc.21841

    Article  CAS  PubMed  Google Scholar 

  80. Han, S. W., Ahn, J. Y., Lee, S., Noh, Y. S., Jung, H. C., Lee, M. H., et al. (2020). Gene expression network analysis of lymph node involvement in colon cancer identifies AHSA2, CDK10, and CWC22 as possible prognostic markers. Scientific Reports, 10(1), 7170. https://doi.org/10.1038/s41598-020-63806-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xu, T., Wu, K., Shi, J., Ji, L., Song, X., Tao, G., et al. (2022). LINC00858 promotes colon cancer progression through activation of STAT3/5 signaling by recruiting transcription factor RAD21 to upregulate PCNP. Cell Death Discovery, 8(1), 228. https://doi.org/10.1038/s41420-022-00832-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yue, B., Liu, C., Sun, H., Liu, M., Song, C., Cui, R., et al. (2018). A positive feed-forward loop between LncRNA-CYTOR and Wnt/β-catenin signaling promotes metastasis of colon cancer. Molecular Therapy, 26(1), 1287–1298. https://doi.org/10.1016/j.ymthe.2018.02.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhao, H., Ming, T., Tang, S., Ren, S., Yang, H., Liu, M., et al. (2022). Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Molecular Cancer., 21(1), 144. https://doi.org/10.1186/s12943-022-01616-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu, F., Liang, Y., Sun, R., Yang, W., Liang, Z., Gu, J., et al. (2022). Astragalus mongholicus Bunge and Curcuma aromatica Salisb. inhibits liver metastasis of colon cancer by regulating EMT via the CXCL8/CXCR2 axis and PI3K/AKT/mTOR signaling pathway. Chinese Medicine, 17(1), 91. https://doi.org/10.1186/s13020-022-00641-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Narayanankutty, A. (2019). PI3K/ Akt/ mTOR pathway as a therapeutic target for colorectal cancer: A review of preclinical and clinical evidence. Current Drug Targets, 20(1), 1217–1226. https://doi.org/10.2174/1389450120666190618123846

    Article  CAS  PubMed  Google Scholar 

  86. Wang, R., Li, S., Hou, Q., Zhang, B., Chu, H., Hou, Y., et al. (2023). Propofol inhibits colon cancer cell stemness and epithelial-mesenchymal transition by regulating SIRT1, Wnt/β-catenin and PI3K/AKT/mTOR signaling pathways. Discover Oncology, 14(1), 137. https://doi.org/10.1007/s12672-023-00734-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhu, L., Tian, G., Yang, Q., De, G., Zhang, Z., Wang, Y., et al. (2016). Thyroid hormone receptor β1 suppresses proliferation and migration by inhibiting PI3K/Akt signaling in human colorectal cancer cells. Oncology Reports, 36(1), 1419–1426. https://doi.org/10.3892/or.2016.4931

    Article  CAS  PubMed  Google Scholar 

  88. Zeng, S., Chen, L., Sun, Q., Zhao, H., Yang, H., Ren, S., et al. (2021). Scutellarin ameliorates colitis-associated colorectal cancer by suppressing Wnt/β-catenin signaling cascade. European Journal of Pharmacology, 906(1), 174253. https://doi.org/10.1016/j.ejphar.2021.174253

    Article  CAS  PubMed  Google Scholar 

  89. Liu, Y., Luo, Y., Cai, M., Shen, P., Li, J., Chen, H., et al. (2021). Anti-angiogenic therapy in ovarian cancer: Current situation and prospects. Indian Journal of Medical Research, 154(1), 680–690. https://doi.org/10.4103/ijmr.IJMR_1160_19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Penny, S. M. (2020). Ovarian cancer: An overview. Radiologic Technology, 91(1), 561–575.

    PubMed  Google Scholar 

  91. Wilczyński, J. R., Wilczyński, M., & Paradowska, E. (2022). Cancer stem cells in ovarian cancer-a source of tumor success and a challenging target for novel therapies. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms23052496

    Article  PubMed  PubMed Central  Google Scholar 

  92. Gupta, K. K., Gupta, V. K., & Naumann, R. W. (2019). Ovarian cancer: Screening and future directions. International Journal of Gynecologic Cancer, 29(1), 195–200. https://doi.org/10.1136/ijgc-2018-000016

    Article  Google Scholar 

  93. Menon, U., Griffin, M., & Gentry-Maharaj, A. (2014). Ovarian cancer screening–current status, future directions. Gynecologic Oncology, 132(1), 490–495. https://doi.org/10.1016/j.ygyno.2013.11.030

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kwon, M., Kim, J. H., Rybak, Y., Luna, A., Choi, C. H., Chung, J. Y., et al. (2016). Reduced expression of FILIP1L, a novel WNT pathway inhibitor, is associated with poor survival, progression and chemoresistance in ovarian cancer. Oncotarget, 7(1), 77052–77070. https://doi.org/10.18632/oncotarget.12784

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lu, R., Tang, P., Zhang, D., Lin, S., Li, H., Feng, X., et al. (2023). SOX9/NFIA promotes human ovarian cancer metastasis through the Wnt/β-catenin signaling pathway. Pathology - Research and Practice, 248(1), 154602. https://doi.org/10.1016/j.prp.2023.154602

    Article  CAS  PubMed  Google Scholar 

  96. Ruiz-Pozo, V. A., Cadena-Ullauri, S., Guevara-Ramírez, P., Paz-Cruz, E., Tamayo-Trujillo, R., & Zambrano, A. K. (2023). Differential microRNA expression for diagnosis and prognosis of papillary thyroid cancer. Frontiers in Medicine (Lausanne)., 10(1), 1139362. https://doi.org/10.3389/fmed.2023.1139362

    Article  PubMed Central  Google Scholar 

  97. Ahmed, A. A., & Essa, M. E. A. (2019). Potential of epigenetic events in human thyroid cancer. Cancer Genetics, 239(1), 13–21. https://doi.org/10.1016/j.cancergen.2019.08.006

    Article  CAS  PubMed  Google Scholar 

  98. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer Journal for Clinicians, 71(1), 209–249. https://doi.org/10.3322/caac.21660

    Article  CAS  Google Scholar 

  99. Morris, L. G., Sikora, A. G., Tosteson, T. D., & Davies, L. (2013). The increasing incidence of thyroid cancer: The influence of access to care. Thyroid., 23(1), 885–891. https://doi.org/10.1089/thy.2013.0045

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yu, J., Deng, Y., Liu, T., Zhou, J., Jia, X., Xiao, T., et al. (2020). Lymph node metastasis prediction of papillary thyroid carcinoma based on transfer learning radiomics. Nature Communications, 11(1), 4807. https://doi.org/10.1038/s41467-020-18497-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hu, Q., Zhang, R., Zheng, J., Song, M., Gu, C., & Li, W. (2023). Hydrogen sulfide attenuates uranium-induced kidney cells pyroptosis via upregulation of PI3K/AKT/mTOR signaling. Journal of Biochemical and Molecular Toxicology, 37(1), e23220. https://doi.org/10.1002/jbt.23220

    Article  CAS  PubMed  Google Scholar 

  102. Wu, D., Wang, H., Teng, T., Duan, S., Ji, A., & Li, Y. (2018). Hydrogen sulfide and autophagy: A double edged sword. Pharmacological Research, 131(1), 120–127. https://doi.org/10.1016/j.phrs.2018.03.002

    Article  CAS  PubMed  Google Scholar 

  103. Wu, D., Li, J., Zhang, Q., Tian, W., Zhong, P., Liu, Z., et al. (2019). Exogenous hydrogen sulfide regulates the growth of human thyroid carcinoma cells. Oxidative Medicine and Cellular Longevity, 1, 6927298. https://doi.org/10.1155/2019/6927298

    Article  CAS  Google Scholar 

  104. Chen, T., & Wong, Y. S. (2008). Selenocystine induces S-phase arrest and apoptosis in human breast adenocarcinoma MCF-7 cells by modulating ERK and Akt phosphorylation. Journal of Agricultural and Food Chemistry, 56(1), 10574–10581. https://doi.org/10.1021/jf802125t

    Article  CAS  PubMed  Google Scholar 

  105. Pang, R., Xu, Y., Hu, X., Liu, B., & Yu, J. (2020). Vitamin D receptor knockdown attenuates the antiproliferative, pro-apoptotic and anti-invasive effect of vitamin D by activating the Wnt/β-catenin signaling pathway in papillary thyroid cancer. Molecular Medicine Reports., 22(1), 4135–4142. https://doi.org/10.3892/mmr.2020.11522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Xin, S., & Ye, X. (2020). Knockdown of long non-coding RNA CCAT2 suppresses the progression of thyroid cancer by inhibiting the Wnt/β-catenin pathway. International Journal of Molecular Medicine, 46(1), 2047–2056. https://doi.org/10.3892/ijmm.2020.4761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Keith, R. L., & Miller, Y. E. (2013). Lung cancer chemoprevention: Current status and future prospects. Nature Reviews Clinical Oncology, 10(1), 334–343. https://doi.org/10.1038/nrclinonc.2013.64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Politi, K., & Herbst, R. S. (2015). Lung cancer in the era of precision medicine. Clinical Cancer Research, 21(1), 2213–2220. https://doi.org/10.1158/1078-0432.Ccr-14-2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lennon, F. E., Cianci, G. C., Cipriani, N. A., Hensing, T. A., Zhang, H. J., Chen, C. T., et al. (2015). Lung cancer-a fractal viewpoint. Nature Reviews Clinical Oncology, 12(1), 664–675. https://doi.org/10.1038/nrclinonc.2015.108

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kanodra, N. M., Silvestri, G. A., & Tanner, N. T. (2015). Screening and early detection efforts in lung cancer. Cancer., 121(1), 1347–1356. https://doi.org/10.1002/cncr.29222

    Article  PubMed  Google Scholar 

  111. Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D. M., Piñeros, M., et al. (2019). Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International Journal of Cancer, 144(1), 1941–1953. https://doi.org/10.1002/ijc.31937

    Article  CAS  PubMed  Google Scholar 

  112. Niculescu Talpoş, I. C., Rumel, R. C., Scurtu, A. D., Dinu, Ş, Miron, M. I., Preduţ, A. D., et al. (2021). Oral squamous cell carcinomas: A histopathological review of multiple cases from Western Romania. Romanian Journal of Morphology and Embryology, 62(1), 929–937. https://doi.org/10.47162/rjme.62.4.05

    Article  PubMed  Google Scholar 

  113. Rahman, R., Shaikh, M. H., Gopinath, D., Idris, A., & Johnson, N. W. (2023). Human papillomavirus and Epstein-Barr virus co-infection in oral and oropharyngeal squamous cell carcinomas: A systematic review and meta-analysis. Molecular Oral Microbiology, 38, 259–274. https://doi.org/10.1111/omi.12412

    Article  CAS  PubMed  Google Scholar 

  114. Chamoli, A., Gosavi, A. S., Shirwadkar, U. P., Wangdale, K. V., Behera, S. K., Kurrey, N. K., et al. (2021). Overview of oral cavity squamous cell carcinoma: Risk factors, mechanisms, and diagnostics. Oral Oncology, 121(1), 105451. https://doi.org/10.1016/j.oraloncology.2021.105451

    Article  PubMed  Google Scholar 

  115. Li, C. X., Liu, H., & Gong, Z. C. (2022). What is the potential interplay between microbiome and tumor microenvironment in oral squamous cell carcinomas? Asian Pacific Journal of Cancer Prevention, 23, 2199–2213. https://doi.org/10.31557/apjcp.2022.23.7.2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rorke, L. B. (1997). Pathologic diagnosis as the gold standard. Cancer., 79(1), 665–667. https://doi.org/10.1002/(sici)1097-0142(19970215)79:4%3c665::aid-cncr1%3e3.0.co;2-d

    Article  CAS  PubMed  Google Scholar 

  117. Zhang, L., Guo, D., Shen, J., Zheng, Y., Zhai, J., Li, R., et al. (2022). Tissue mechanics modulate PCNP expression in oral squamous cell carcinomas with different differentiation. Frontiers in Oncology, 12, 1072276. https://doi.org/10.3389/fonc.2022.1072276

    Article  CAS  PubMed  Google Scholar 

  118. Han, Z. P., Yang, Y., Chen, H. Y., Zhong, M. Y., & Zhuang, G. H. (2021). TIPE2 and PCNP expression abnormalities in peripheral blood mononuclear cells associated with disease activity in rheumatoid arthritis: A meta-analysis. European Review for Medical and Pharmacological Sciences, 25, 1242–1249. https://doi.org/10.26355/eurrev_202102_24828

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Program for Innovative Talents of Science and Technology in Henan Province (No. 23HASTIT043), the Natural Science Foundation of Henan Province for Excellent Young Scholars (No. 212300410026), the Medical Science and Technology Program of Henan Province (No. SBGJ202103096), and the Program for Young Key Teacher of Henan Province (No. 2020GGJS037).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SL and XJ; writing—original draft: SG, RD, QZ, and XW; writing—review and editing: SL and XJ.

Corresponding authors

Correspondence to Shuangyu Lv or Xin-Ying Ji.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Ding, R., Zhao, Q. et al. Recent Insights into the Roles of PEST‐Containing Nuclear Protein. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01188-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01188-5

Keywords

Navigation