Skip to main content
Log in

Nucleoporin 93 Regulates Cancer Cell Growth and Stemness in Bladder Cancer via Wnt/β-Catenin Signaling

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Bladder cancer (BLCA) is a prevalent cancer type with an unmet need for new therapeutic strategies. Nucleoporin 93 (Nup93) is implicated in the pathophysiology of several cancers, but its relationship with bladder cancer remains unclear. Nup93 expression was analyzed in TCGA datasets and 88 BLCA patient samples. Survival analysis and Cox regression models evaluated the association between Nup93 levels and patient prognosis. BLCA cells were used to investigate the effects of Nup93 overexpression or knockdown on cell growth, invasion, stemness (sphere formation and ALDH2 + cancer stem cell marker), and Wnt/β-catenin signaling in vitro. The Wnt activator BML-284 was used to confirm the involvement of Wnt/β-catenin signaling pathway. A xenograft mouse model validated the in vitro findings. Nup93 was highly expressed in BLCA tissues and cell lines, and high Nup93 expression correlated with poor prognosis in BLCA patients. Nup93 silencing inhibited BLCA cell proliferation, Wnt/β-catenin activation, and cancer cell stemness. Conversely, Nup93 overexpression promoted these effects. BML-284 partially rescued the reduction in cell growth and stemness markers caused by Nup93 knockdown. Nup93 knockdown also suppressed the tumor formation of BLCA cells in vivo. Nup93 regulates BLCA cell growth and stemness via the Wnt/β-catenin pathway, suggesting its potential as a prognostic marker and therapeutic target in BLCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author via email request.

Abbreviations

BLCA:

Bladder cancer

Nup:

Nucleoporin

PI3K:

Phosphatidylinositol 3-kinase

JAK/STAT:

Janus kinase/signal transducer and activator of transcription

IHC:

Immunohistochemistry

qRT-PCR:

Quantitative real-time polymerase chain reaction

ALDH:

Aldehyde dehydrogenase

References

  1. Patel VG, Oh WK, Galsky MD (2020) Treatment of muscle-invasive and advanced bladder cancer in 2020. 70(5):404–423.

  2. Lin, F., Yin, H. B., Li, X. Y., Zhu, G. M., He, W. Y., & Gou, X. (2020). Bladder cancer cell-secreted exosomal miR-21 activates the PI3K/AKT pathway in macrophages to promote cancer progression. International Journal of Oncology, 56(1), 151–164.

    CAS  PubMed  Google Scholar 

  3. Zhang, M., Du, H., Wang, L., Yue, Y., Zhang, P., Huang, Z., Lv, W., Ma, J., Shao, Q., Ma, M., et al. (2020). Thymoquinone suppresses invasion and metastasis in bladder cancer cells by reversing EMT through the Wnt/β-catenin signaling pathway. Chem-Biol Interactions, 320, 109022.

    Article  CAS  Google Scholar 

  4. Huang, W., Li, Y., Zhang, C., Zha, H., Zhou, X., Fu, B., Guo, J., & Wang, G. (2020). IGF2BP3 facilitates cell proliferation and tumorigenesis via modulation of JAK/STAT signalling pathway in human bladder cancer. Journal of Cellular and Molecular Medicine, 24(23), 13949–13960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lin, C. S., Liang, Y., Su, S. G., Zheng, Y. L., Yang, X., Jiang, N., Fu, L., Zhou, J., Zhang, Y., Deng, R., et al. (2022). Nucleoporin 93 mediates β-catenin nuclear import to promote hepatocellular carcinoma progression and metastasis. Cancer Letters, 526, 236–247.

    Article  CAS  PubMed  Google Scholar 

  6. Bersini S, Lytle NK, Schulte R, Huang L, Wahl GM, Hetzer MW: Nup93 regulates breast tumor growth by modulating cell proliferation and actin cytoskeleton remodeling. Life Sci Alliance 2020, 3(1).

  7. Bley CJ, Nie S, Mobbs GW, Petrovic S, Gres AT, Liu X, Mukherjee S, Harvey S, Huber FM, Lin DH et al (2022) Architecture of the cytoplasmic face of the nuclear pore. Science (New York, NY), 376(6598):eabm9129.

  8. Sugie, S., Yoshimi, N., Tanaka, T., Mori, H., & Williams, G. M. (1994). Alterations of nuclear pores in preneoplastic and neoplastic rat liver lesions induced by 2-acetylaminofluorene. Carcinogenesis, 15(1), 95–98.

    Article  CAS  PubMed  Google Scholar 

  9. Simon, D. N., & Rout, M. P. (2014). Cancer and the nuclear pore complex. Advances in Experimental Medicine and Biology, 773, 285–307.

    Article  CAS  PubMed  Google Scholar 

  10. Ouyang X, Hao X, Liu S, Hu J, Hu L (2019) Expression of Nup93 is associated with the proliferation, migration and invasion capacity of cervical cancer cells. 51(1672–9145):1276.

  11. Nataraj, N. B., Noronha, A., Lee, J. S., Ghosh, S., Mohan Raju, H. R., Sekar, A., Zuckerman, B., Lindzen, M., Tarcitano, E., Srivastava, S., et al. (2022). Nucleoporin-93 reveals a common feature of aggressive breast cancers: robust nucleocytoplasmic transport of transcription factors. Cell Reports, 38(8), 110418.

    Article  CAS  PubMed  Google Scholar 

  12. Chabaud, S., Pellerin, È., Caneparo, C., Ringuette-Goulet, C., Pouliot, F., & Bolduc, S. (2022). Bladder cancer cell lines adapt their aggressiveness profile to oxygen tension. Oncology Letters, 24(1), 220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mahmood, T., & Yang, P. C. (2012). Western blot: technique, theory, and trouble shooting. North Am J Med Sci, 4(9), 429–434.

    Article  Google Scholar 

  14. Cao, X. M., Luo, X. G., Liang, J. H., Zhang, C., Meng, X. P., & Guo, D. W. (2012). Critical selection of internal control genes for quantitative real-time RT-PCR studies in lipopolysaccharide-stimulated human THP-1 and K562 cells. Biochemical and Biophysical Research Communications, 427(2), 366–372.

    Article  CAS  PubMed  Google Scholar 

  15. Amin, M. B., Trpkov, K., Lopez-Beltran, A., & Grignon, D. (2014). members of the IMPtUroEC: Best practices recommendations in the application of immunohistochemistry in the bladder lesions: report from the international society of urologic pathology consensus conference. American Journal of Surgical Pathology, 38(8), e20-34.

    Article  PubMed  Google Scholar 

  16. Lanza, A. M., Kim, D. S., & Alper, H. S. (2013). Evaluating the influence of selection markers on obtaining selected pools and stable cell lines in human cells. Biotechnology Journal, 8(7), 811–821.

    Article  CAS  PubMed  Google Scholar 

  17. Li, Y., Liu, R., Han, X., Xu, W., & Liu, Y. (2023). PLAGL2 increases adriamycin resistance and EMT in breast cancer cells by activating the Wnt pathway. Genes Genomics, 45(1), 49–57.

    Article  CAS  PubMed  Google Scholar 

  18. Oner, E., Gray, S. G., & Finn, S. P. (2023). Cell viability assay with 3D prostate tumor spheroids. Methods in Molecular Biology, 2645, 263–275.

    Article  CAS  PubMed  Google Scholar 

  19. Justus, C. R., Marie, M. A., Sanderlin, E. J., & Yang, L. V. (2023). Transwell in vitro cell migration and invasion assays. Methods in Molecular Biology, 2644, 349–359.

    Article  CAS  PubMed  Google Scholar 

  20. Wei, J., Zheng, X., Li, W., Li, X., & Fu, Z. (2022). Sestrin2 reduces cancer stemness via Wnt/β-catenin signaling in colorectal cancer. Cancer Cell International, 22(1), 75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Renner, P., Crone, M., Kornas, M., Pioli, K. T., & Pioli, P. D. (2022). Intracellular flow cytometry staining of antibody-secreting cells using phycoerythrin-conjugated antibodies: pitfalls and solutions. Antib Ther, 5(3), 151–163.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, F., Ye, Z., & Yang, W. (2011). Evaluation of tumor formation of three bladder cancer cell lines in nude mice. J Huazhong Univ Sci Technol Med Sci, 31(2), 210–214.

    Article  Google Scholar 

  23. Ayob, A. Z., & Ramasamy, T. S. (2018). Cancer stem cells as key drivers of tumour progression. Journal of Biomedical Science, 25(1), 20.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kotolloshi R, Gajda M, Grimm MO, Steinbach D (2022) Wnt/β-Catenin Signalling and Its Cofactor BCL9L Have an Oncogenic Effect in Bladder Cancer Cells. Int J Mol Sci 23(10).

  25. Elbadawy, M., Usui, T., Yamawaki, H., & Sasaki, K. (2019). Emerging roles of C-Myc in cancer stem cell-related signaling and resistance to cancer chemotherapy: a potential therapeutic target against colorectal cancer. International Journal of Molecular Sciences, 20(9), 2340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, H. L., Wang, P., Lu, M. Z., Zhang, S. D., & Zheng, L. (2019). c-Myc maintains the self-renewal and chemoresistance properties of colon cancer stem cells. Oncology Letters, 17(5), 4487–4493.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. von Lindern, M., van Baal, S., Wiegant, J., Raap, A., Hagemeijer, A., & Grosveld, G. (1992). Can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3’ half to different genes: characterization of the set gene. Molecular and Cellular Biology, 12(8), 3346–3355.

    Google Scholar 

  28. Kraemer, D., Wozniak, R. W., Blobel, G., & Radu, A. (1994). The human CAN protein, a putative oncogene product associated with myeloid leukemogenesis, is a nuclear pore complex protein that faces the cytoplasm. Proceedings of the National academy of Sciences of the United States of America, 91(4), 1519–1523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rodriguez-Bravo, V., Pippa, R., Song, W. M., Carceles-Cordon, M., Dominguez-Andres, A., Fujiwara, N., Woo, J., Koh, A. P., Ertel, A., Lokareddy, R. K., et al. (2018). Nuclear pores promote lethal prostate cancer by increasing POM121-Driven E2F1, MYC, and AR nuclear import. Cell, 174(5), 1200-1215.e1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Köhler, A., & Hurt, E. (2010). Gene regulation by nucleoporins and links to cancer. Molecular cell, 38(1), 6–15.

    Article  PubMed  Google Scholar 

  31. Borlido J, D'Angelo MA (2018) Nup62-mediated nuclear import of p63 in squamous cell carcinoma. 19(1):3–4.

  32. Holzer, K., Ori, A., Cooke, A., Dauch, D., Drucker, E., Riemenschneider, P., Andres-Pons, A., DiGuilio, A. L., Mackmull, M.-T., Baßler, J., et al. (2019). Nucleoporin Nup155 is part of the p53 network in liver cancer. Nature Communications, 10(1), 2147.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu, H. (2020). NUP98 rearrangement in B lymphoblastic leukemia with hyperdiploidy. Blood, 136(8), 1011–1011.

    Article  CAS  PubMed  Google Scholar 

  34. Curtis, C., Shah, S. P., Chin, S. F., Turashvili, G., Rueda, O. M., Dunning, M. J., Speed, D., Lynch, A. G., Samarajiwa, S., Yuan, Y., et al. (2012). The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature, 486(7403), 346–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou, L., & Panté, N. (2010). The nucleoporin Nup153 maintains nuclear envelope architecture and is required for cell migration in tumor cells. FEBS Letters, 584(14), 3013–3020.

    Article  CAS  PubMed  Google Scholar 

  36. Re, A., Colussi, C., Nanni, S., Aiello, A., Bacci, L., Grassi, C., Pontecorvi, A., & Farsetti, A. (2018). Nucleoporin 153 regulates estrogen-dependent nuclear translocation of endothelial nitric oxide synthase and estrogen receptor beta in prostate cancer. Oncotarget, 9(46), 27985–27997.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.

    Article  CAS  PubMed  Google Scholar 

  38. Bomken, S., Fiser, K., Heidenreich, O., & Vormoor, J. (2010). Understanding the cancer stem cell. British Journal of Cancer, 103(4), 439–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ma, S., Chan, K. W., Hu, L., Lee, T. K., Wo, J. Y., Ng, I. O., Zheng, B. J., & Guan, X. Y. (2007). Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology, 132(7), 2542–2556.

    Article  CAS  PubMed  Google Scholar 

  40. Hemmati, H. D., Nakano, I., Lazareff, J. A., Masterman-Smith, M., Geschwind, D. H., Bronner-Fraser, M., & Kornblum, H. I. (2003). Cancerous stem cells can arise from pediatric brain tumors. Proceedings of the National academy of Sciences of the United States of America, 100(25), 15178–15183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National academy of Sciences of the United States of America, 100(7), 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J., & Maitland, N. J. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research, 65(23), 10946–10951.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, H., Mei, Y., Luo, C., Huang, Q., Wang, Z., Lu, G. M., Qin, L., Sun, Z., Huang, C. W., Yang, Z. W., et al. (2021). Single-cell analyses reveal mechanisms of cancer stem cell maintenance and epithelial-mesenchymal transition in recurrent bladder cancer. Clinical Cancer Research, 27(22), 6265–6278.

    Article  CAS  PubMed  Google Scholar 

  44. Greve B, Kelsch R, Spaniol K, Eich HT, Götte M (2012,) Flow cytometry in cancer stem cell analysis and separation. 81A(4):284-293

  45. Kallifatidis, G., Smith, D. K., Morera, D. S., Gao, J., Hennig, M. J., Hoy, J. J., Pearce, R. F., Dabke, I. R., Li, J., Merseburger, A. S., et al. (2019). β-arrestins regulate stem cell-like phenotype and response to chemotherapy in bladder cancer. Mol Cancer Therapeutics, 18(4), 801–811.

    Article  CAS  Google Scholar 

  46. Colussi, C., & Grassi, C. (2021). Epigenetic regulation of neural stem cells: the emerging role of nucleoporins. Stem cells (Dayton, Ohio), 39(12), 1601–1614.

    Article  CAS  PubMed  Google Scholar 

  47. Toledo-Guzmán, E. M., Hernández, I. M., Gómez-Gallegos, A. Á., & Ortiz-Sánchez, E. (2019). ALDH as a stem cell marker in solid tumors. Curr Stem Cell Res Therapy, 14(5), 375–388.

    Article  Google Scholar 

  48. Ferreira-Teixeira, M., Parada, B., Rodrigues-Santos, P., Alves, V., Ramalho, J. S., Caramelo, F., Sousa, V., Reis, F., & Gomes, C. M. (2015). Functional and molecular characterization of cancer stem-like cells in bladder cancer: a potential signature for muscle-invasive tumors. Oncotarget, 6(34), 36185–36201.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhou, Q., Chen, S., Lu, M., Luo, Y., Wang, G., Xiao, Y., Ju, L., & Wang, X. (2019). EFEMP2 suppresses epithelial-mesenchymal transition via Wnt/β-catenin signaling pathway in human bladder cancer. International Journal of Biological Sciences, 15(10), 2139–2155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, J., Fang, R., Wu, J., Si, Y., Bai, J., & Wang, Q. (2022). The NOP14 nucleolar protein suppresses the function and stemness of melanoma stem-like cells through Wnt/beta-catenin signaling inactivation. Bioengineered, 13(3), 7648–7658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: WM, ZW, JZ. Data analysis and interpretation: ZW, JZ, LL, CZ, collection of data: ZW, XH, SL, HC. Manuscript writing: all authors. final approval of manuscript: all authors.

Corresponding author

Correspondence to Wenlong Miao.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Ethics Approval and Consent to Participate

Collection of samples used in this study was approved by the Ethics Committee of The First Affiliated Hospital of Hebei North University. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Each animal experimental procedure gained approval from Animal Ethics Committee of The First Affiliated Hospital of Hebei North University. The experimental protocol was performed in accordance with the relevant guidelines and regulations of the Basel Declaration. The study is reported in accordance with ARRIVE guidelines (https://arriveguidelines.org).

Consent for Publication

All cases provided the informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, J., Luo, L. et al. Nucleoporin 93 Regulates Cancer Cell Growth and Stemness in Bladder Cancer via Wnt/β-Catenin Signaling. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01184-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01184-9

Keywords

Navigation