Skip to main content
Log in

Design and Production of a Novel Anti-PD-1 Nanobody by CDR Grafting and Site-Directed Mutagenesis Approach

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Programmed cell death protein-1 (PD-1) is a membrane protein expressed on the surface of activated T-cells, B-cells, natural killer cells, dendritic cells, macrophages, and monocytes. Inhibition of the PD-1/PD-L1 interaction by monoclonal antibodies (mAbs) has many therapeutic benefits and has led to a major advance in the treatment of various types of tumors. Due to the large size and immunogenicity of the antibodies (Abs), using small molecules such as nanobodies (nanobodies or VHH) is more appropriate for this purpose. In this research, the complementarity determining regions (CDR) grafting method was used to produce anti-PD-1 nanobody. For producing the grafted anti-PD-1 nanobody, CDRs from the tislelizumab mAb were grafted into the frameworks of a nanobody whose sequence is similar to the tislelizumab mAb. Also, the site-directed mutagenesis method was used to produce two mutated anti-PD-1 nanobodies which increased the affinity of grafted anti-PD-1 nanobodies. Two amino acid substitutions (Tyr97Arg and Tyr102Arg) in the VHH-CDR3 were used to improve grafted nanobody affinity and the binding capacity of the mutated nanobodies. The binding of the anti-PD-1 nanobodies and PD-1 antigen (Ag) was confirmed by Dot blot, western blot, and indirect ELISA analysis. According to the results of these in silico and in vitro studies, the binding between grafted and mutated nanobodies with PD-1 was confirmed. Also, our findings show that site-directed mutagenesis can increase the affinity of nanobodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All experimental data generated or analyzed during this study are included in the article.

Abbreviations

mAb:

Monoclonal antibodies

PD-1:

Programmed cell death protein-1

Ab:

Antibody

CDR:

Complementarity determining regions

Ag:

Antigen

ICI:

Immune checkpoint inhibitor

VH:

Heavy chain

PVDF:

Polyvinylidene fluoride

References

  1. Pucci, C., Martinelli, C., & Ciofani, G. (2019). Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience, 13, 961–987.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tan, S., Li, D., & Zhu, X. (2020). Cancer immunotherapy: Pros, cons and beyond. Biomedicine & Pharmacotherapy, 124, 109821–109832.

    Article  Google Scholar 

  3. Shiravand, Y., Khodadadi, F., Kashani, S. M. A., Hosseini-Fard, S. R., Hosseini, S., Sadeghirad, H., Ladwa, R., O’Byrne, K., & Kulasinghe, A. (2022). Immune checkpoint inhibitors in cancer therapy. Current Oncology, 29, 3044–3060.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Topalian, S. L., Drake, C. G., & Pardoll, D. M. (2015). Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell, 27, 450–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Han, Y., Liu, D., & Li, L. (2020). PD-1/PD-L1 pathway: Current researches in cancer. American Journal of Cancer Research, 10, 727–742.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. McDermott, D. F., & Atkins, M. B. (2013). PD-1 as a potential target in cancer therapy. Cancer Medicine, 2, 662–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ahmadzadeh, M., Johnson, L. A., Heemskerk, B., Wunderlich, J. R., Dudley, M. E., White, D. E., & Rosenberg, S. A. (2009). Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood American Journal of Hematology, 114, 1537–1544.

    CAS  Google Scholar 

  8. Sharpe, A. H., Wherry, E. J., Ahmed, R., & Freeman, G. J. (2007). The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nature Immunology, 8, 239–245.

    Article  CAS  PubMed  Google Scholar 

  9. Ohaegbulam, K. C., Assal, A., Lazar-Molnar, E., Yao, Y., & Zang, X. (2015). Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends in Molecular Medicine, 21, 24–33.

    Article  CAS  PubMed  Google Scholar 

  10. Lee, A., & Keam, S. J. (2020). Tislelizumab: First approval. Drugs, 80, 617–624.

    Article  CAS  PubMed  Google Scholar 

  11. Tan, S., Zhang, C. W., & Gao, G. F. (2016). Seeing is believing: Anti-PD-1/PD-L1 monoclonal antibodies in action for checkpoint blockade tumor immunotherapy. Signal Transduction and Targeted Therapy, 1, 1–4.

    Article  Google Scholar 

  12. Feng, Y., Hong, Y., Sun, H., Zhang, B., Wu, H., Li, K., Liu, X., & Liu, Y. (2019). The molecular binding mechanism of tislelizumab, an investigational anti-PD-1 antibody, is differentiated from pembrolizumab and nivolumab. In: Proceedings of the 110th annual meeting of the American association for cancer research. Atlanta, GA: AACR.

  13. Shen, L., Guo, J., Zhang, Q., Pan, H., Yuan, Y., Bai, Y., Liu, T., Zhou, Q., Zhao, J., & Shu, Y. (2020). Tislelizumab in Chinese patients with advanced solid tumors: An open-label, non-comparative, phase 1/2 study. JITC, 8, e000437.

    PubMed  PubMed Central  Google Scholar 

  14. Bannas, P., Hambach, J., & Koch-Nolte, F. (2017). Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Frontiers in Immunology, 8, 1603–1616.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cruz, E., & Kayser, V. (2019). Monoclonal antibody therapy of solid tumors: clinical limitations and novel strategies to enhance treatment efficacy. Biologics: Targets and Therapy, 13, 33–51.

    CAS  PubMed  Google Scholar 

  16. Gravbrot, N., Gilbert-Gard, K., Mehta, P., Ghotmi, Y., Banerjee, M., Mazis, C., & Sundararajan, S. (2019). Therapeutic monoclonal antibodies targeting immune checkpoints for the treatment of solid tumors. Antibodies, 8, 51–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Meyer, T., Muyldermans, S., & Depicker, A. (2014). Nanobody-based products as research and diagnostic tools. Trends in Biotechnology, 32, 263–270.

    Article  PubMed  Google Scholar 

  18. Hu, Y., Liu, C., & Muyldermans, S. (2017). Nanobody-based delivery systems for diagnosis and targeted tumor therapy. Frontiers in Immunology, 8, 1442–1459.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Van Audenhove, I., & Gettemans, J. (2016). Nanobodies as versatile tools to understand, diagnose, visualize and treat cancer. eBioMedicine, 8, 40–48.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Muyldermans, S. (2021). A guide to: Generation and design of nanobodies. FEBS Journal, 288, 2084–2102.

    Article  CAS  PubMed  Google Scholar 

  21. Wagner, H. J., Wehrle, S., Weiss, E., Cavallari, M., & Weber, W. (2018). A two-step approach for the design and generation of nanobodies. International Journal of Molecular Sciences, 19, 3444–3461.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kim, H.-Y., Stojadinovic, A., & Izadjoo, M. J. (2014). Affinity maturation of monoclonal antibodies by multi-site-directed mutagenesis. Monoclonal Antibodies: Methods and Protocols, 1131, 407–420.

    Article  CAS  Google Scholar 

  23. Wang, X., Chen, Q., Sun, Z., Wang, Y., Su, B., Zhang, C., Cao, H., & Liu, X. (2020). Nanobody affinity improvement: Directed evolution of the anti-ochratoxin A single domain antibody. International Journal of Biological Macromolecules, 151, 312–321.

    Article  CAS  PubMed  Google Scholar 

  24. Wark, K. L., & Hudson, P. J. (2006). Latest technologies for the enhancement of antibody affinity. Advanced Drug Delivery Reviews, 58, 657–670.

    Article  CAS  PubMed  Google Scholar 

  25. Ye, W., Liu, X., He, R., Gou, L., Lu, M., Yang, G., Wen, J., Wang, X., Liu, F., & Ma, S. (2022). Improving antibody affinity through in vitro mutagenesis in complementarity determining regions. Journal of Biomedical Research, 36, 155–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, G., Dong, B.-X., Liu, Y.-H., Li, C.-J., & Zhang, L.-P. (2013). Gene synthesis method based on overlap extension PCR and DNAWorks program. Methods in Molecular Biology, 1073, 9–17.

    Article  CAS  PubMed  Google Scholar 

  27. Jiang, Y., Chen, M., Nie, H., & Yuan, Y. (2019). PD-1 and PD-L1 in cancer immunotherapy: Clinical implications and future considerations. Human Vaccines & Immunotherapeutics, 15, 1111–1122.

    Article  Google Scholar 

  28. Liu, S.-Y., & Wu, Y.-L. (2020). Tislelizumab: An investigational anti-PD-1 antibody for the treatment of advanced non-small cell lung cancer (NSCLC). Expert Opinion on Investigational Drugs, 29, 1355–1364.

    Article  CAS  PubMed  Google Scholar 

  29. Topalian, S. L., Drake, C. G., & Pardoll, D. M. (2012). Targeting the PD-1/B7-H1 (PD-L1) pathway to activate anti-tumor immunity. Current Opinion in Immunology, 24, 207–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zheng, X., Gu, H., Cao, X., Pan, B., Xiang, H., Ju, M., Xu, S., & Zheng, M. (2023). Tislelizumab for cervical cancer: A retrospective study and analysis of correlative blood biomarkers. Frontiers in Immunology, 14, 1113369–1113387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Unciti-Broceta, J. D., Del Castillo, T., Soriano, M., Magez, S., & Garcia-Salcedo, J. A. (2013). Novel therapy based on camelid nanobodies. Therapeutic Delivery, 4, 1321–1336.

    Article  CAS  PubMed  Google Scholar 

  32. Yang, E. Y., & Shah, K. (2020). Nanobodies: Next generation of cancer diagnostics and therapeutics. Frontiers in Oncology, 10, 1182–1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Arezumand, R., Alibakhshi, A., Ranjbari, J., Ramazani, A., & Muyldermans, S. (2017). Nanobodies as novel agents for targeting angiogenesis in solid cancers. Frontiers in Immunology, 8, 1746–1759.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Deffar, K., Shi, H., Li, L., Wang, X., & Zhu, X. (2009). Nanobodies-the new concept in antibody engineering. AJB, 8, 2645–2652.

    CAS  Google Scholar 

  35. Shi, W., Yang, X., Xie, S., Zhong, D., Lin, X., Ding, Z., Duan, S., Mo, F., Liu, A., & Yin, S. (2021). A new PD-1-specific nanobody enhances the antitumor activity of T-cells in synergy with dendritic cell vaccine. Cancer Letters, 522, 184–197.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Y., Yang, S., Jiang, D., Li, Y., Ma, S., Wang, L., Li, G., Wang, H., Zhang, A., & Xu, G. (2023). Screening and identification of an anti-PD-1 nanobody with antitumor activity. Bioscience Reports, 43, BSR20221546.

    Article  CAS  PubMed Central  Google Scholar 

  37. Carter, P. (1986). Site-directed mutagenesis. The Biochemical Journal, 237, 1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lim, C. C., Choong, Y. S., & Lim, T. S. (2019). Cognizance of molecular methods for the generation of mutagenic phage display antibody libraries for affinity maturation. International Journal of Molecular Sciences, 20, 1861–1893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Yazd University Research Council for the support of this research.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.M.H. and M.K.; methodology, M.M. and S.M.; formal analysis and investigation, M.M.H., M.K., M.M. and S.M; writing—original draft preparation, M.M.; writing—review and editing, J M.M.H. and M.K.; supervision, M.M.H. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mohammad Mehdi Heidari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, M., Mirhoseini, S., Heidari, M.M. et al. Design and Production of a Novel Anti-PD-1 Nanobody by CDR Grafting and Site-Directed Mutagenesis Approach. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01162-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01162-1

Keywords

Navigation