Skip to main content
Log in

Identification of Ferroptosis-Inflammation Related Hub Genes and the Disease Subtypes in Idiopathic Pulmonary Fibrosis via System Biology Approaches

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

We aim to screen and analyze the ferroptosis inflammation-related hub genes associated with idiopathic pulmonary fibrosis (IPF). The GSE52463 and GSE110147 datasets were obtained from the GEO database and merged. The DEGs were selected by differential analysis and intersected with inflammation-related genes and ferroptosis-related genes to acquire the ferroptosis-related differentially expressed genes (FRDEGs). GO, KEGG, GSEA, and GSVA were performed to investigate the features of FRDEGs. The key module genes were selected by WGCNA and employed to generate the PPI network using Cytoscape. Subsequently, the hub genes were identified using cytoHubba and validated by ROC curves generated by survivalROC. Finally, the correlations of hub genes were analyzed through Spearman and the subtypes of IPF were constructed using ConsensusClusterPlus. A total of 1814 DEGs were screened out and 18 FRDEGs were acquired from the intersection of DEGs, ferroptosis-related genes, and inflammation-related genes. GO and KEGG analysis revealed that FRDEGs were primarily involved in bacterial-origin molecular, response infectious disease, and iron ion transport. GSEA results suggested a predominant association with autoimmune diseases and GSVA identified ten different pathways between PF and control. Through WGCNA, three highly correlated modules were identified and ten key module genes were obtained by intersecting genes in the three modules with FRDEGs. Finally, employing three algorithms within the cytoHubba led to the identification of eight hub genes: CCND1, TP53, STAT3, CTNNB1 CDH1, ESR1, HSP90AA1, and EP300. Eventually, two distinct subtypes of IPF were identified. The present research successfully identified the hub genes associated with ferroptosis and inflammation and their biological effects on IPF. Furthermore, two disease subtypes of IPF were constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data and Materials Availability

The datasets used and/or analyzed during the current study are available from the corresponding author via email request.

References

  1. Wijsenbeek, M., & Cottin, V. (2020). Spectrum of fibrotic lung diseases. New England Journal of Medicine, 383(10), 958–968.

    Article  CAS  PubMed  Google Scholar 

  2. Lederer, D. J., & Martinez, F. J. (2018). Idiopathic pulmonary fibrosis. New England Journal of Medicine, 378(19), 1811–1823.

    Article  CAS  PubMed  Google Scholar 

  3. Savin, I. A., Zenkova, M. A., & Sen’kova, A. V. (2022). Pulmonary fibrosis as a result of acute lung inflammation: Molecular mechanisms, relevant in vivo models, prognostic and therapeutic approaches. International Journal of Molecular Sciences, 23(23), 14959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pardo, A., & Selman, M. (2021). The interplay of the genetic architecture, aging, and environmental factors in the pathogenesis of idiopathic pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Biology, 64(2), 163–172.

    Article  CAS  PubMed  Google Scholar 

  5. Nance, T., Smith, K. S., Anaya, V., Richardson, R., Ho, L., Pala, M., Mostafavi, S., Battle, A., Feghali-Bostwick, C., Rosen, G., & Montgomery, S. B. (2014). Transcriptome analysis reveals differential splicing events in IPF lung tissue. PLoS ONE, 9(5), e97550.

    Article  PubMed  Google Scholar 

  6. Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., Patel, D. N., Bauer, A. J., Cantley, A. M., Yang, W. S., Morrison, B., III., & Stockwell, B. R. (2012). Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 149(5), 1060–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiang, X., Stockwell, B. R., & Conrad, M. (2021). Ferroptosis: Mechanisms, biology and role in disease. Nature Reviews. Molecular Cell Biology, 22(4), 266–282.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pei, Z., Qin, Y., Fu, X., Yang, F., Huo, F., Liang, X., Wang, S., Cui, H., Lin, P., Zhou, G., Yan, J., Wu, J., Chen, Z. N., & Zhu, P. (2022). Inhibition of ferroptosis and iron accumulation alleviates pulmonary fibrosis in a bleomycin model. Redox Biology, 57, 102509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tsubouchi, K., Araya, J., Yoshida, M., Sakamoto, T., Koumura, T., Minagawa, S., Hara, H., Hosaka, Y., Ichikawa, A., Saito, N., Kadota, T., Kurita, Y., Kobayashi, K., Ito, S., Fujita, Y., Utsumi, H., Hashimoto, M., Wakui, H., Numata, T., … Kuwano, K. (2019). Involvement of GPx4-regulated lipid peroxidation in idiopathic pulmonary fibrosis pathogenesis. The Journal of Immunology, 203(8), 2076–2087.

    Article  CAS  PubMed  Google Scholar 

  10. Liu, Y., Cheng, D., Wang, Y., Xi, S., Wang, T., Sun, W., Li, G., Ma, D., Zhou, S., Li, Z., & Ni, C. (2022). UHRF1-mediated ferroptosis promotes pulmonary fibrosis via epigenetic repression of GPX4 and FSP1 genes. Cell Death and Disease, 13(12), 1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Henderson, N. C., Rieder, F., & Wynn, T. A. (2020). Fibrosis: From mechanisms to medicines. Nature, 587(7835), 555–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Heukels, P., Moor, C. C., von der Thusen, J. H., Wijsenbeek, M. S., & Kool, M. (2019). Inflammation and immunity in IPF pathogenesis and treatment. Respiratory Medicine, 147, 79–91.

    Article  CAS  PubMed  Google Scholar 

  13. Davis, S., & Meltzer, P. S. (2007). GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics, 23(14), 1846–1847.

    Article  PubMed  Google Scholar 

  14. Cecchini, M. J., Hosein, K., Howlett, C. J., Joseph, M., & Mura, M. (2018). Comprehensive gene expression profiling identifies distinct and overlapping transcriptional profiles in non-specific interstitial pneumonia and idiopathic pulmonary fibrosis. Respiratory Research, 19(1), 153.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., & Storey, J. D. (2012). The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics, 28(6), 882–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43), 15545–15550.

    Article  CAS  Google Scholar 

  17. Yu, G., Wang, L. G., Han, Y., & He, Q. Y. (2012). clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology, 16(5), 284–287.

    Article  CAS  PubMed  Google Scholar 

  18. Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdottir, H., Tamayo, P., & Mesirov, J. P. (2011). Molecular signatures database (MSigDB) 3.0. Bioinformatics, 27(12), 1739–1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & von Mering, C. (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613.

    Article  CAS  PubMed  Google Scholar 

  21. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang, X., Li, Y., Lv, R., Qian, H., Chen, X., & Yang, C. F. (2019). Study on the multitarget mechanism and key active ingredients of Herba Siegesbeckiae and volatile oil against rheumatoid arthritis based on network pharmacology. Evidence-Based Complementary and Alternative Medicine, 2019, 8957245.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M. T., & Lin, C. Y. (2014). cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 8(Suppl 4), S11.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wilkerson, M. D., & Hayes, D. N. (2010). ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics, 26(12), 1572–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. King, T. E., Jr., Pardo, A., & Selman, M. (2011). Idiopathic pulmonary fibrosis. Lancet, 378(9807), 1949–1961.

    Article  PubMed  Google Scholar 

  26. American Thoracic Society. (2000). Idiopathic pulmonary fibrosis: Diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). American Journal of Respiratory and Critical Care Medicine, 161(2 Pt 1), 646–664.

    Google Scholar 

  27. Yuan, L., Sun, Y., Zhou, N., Wu, W., Zheng, W., & Wang, Y. (2022). Dihydroquercetin attenuates silica-induced pulmonary fibrosis by inhibiting ferroptosis signaling pathway. Frontiers in Pharmacology, 13, 845600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Phan, T. H. G., Paliogiannis, P., Nasrallah, G. K., Giordo, R., Eid, A. H., Fois, A. G., Zinellu, A., Mangoni, A. A., & Pintus, G. (2020). Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cellular and Molecular Life Sciences, 78(5), 2031–2057.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Krein, P. M., & Winston, B. W. (2002). Roles for insulin-like growth factor I and transforming growth factor-beta in fibrotic lung disease. Chest, 122(6 Suppl), 289S-293S.

    Article  CAS  PubMed  Google Scholar 

  30. Pongracz, J. E., & Stockley, R. A. (2006). Wnt signalling in lung development and diseases. Respiratory Research, 7(1), 15.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Guo, Y., Xiao, L., Sun, L., & Liu, F. (2012). Wnt/beta-catenin signaling: A promising new target for fibrosis diseases. Physiological Research, 61(4), 337–346.

    Article  CAS  PubMed  Google Scholar 

  32. Van Scoyk, M., Randall, J., Sergew, A., Williams, L. M., Tennis, M., & Winn, R. A. (2008). Wnt signaling pathway and lung disease. Translational Research, 151(4), 175–180.

    Article  PubMed  Google Scholar 

  33. Shi, J., Li, F., Luo, M., Wei, J., & Liu, X. (2017). Distinct roles of Wnt/beta-catenin signaling in the pathogenesis of chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Mediators of Inflammation, 2017, 3520581.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wu, Q., Zhang, K. J., Jiang, S. M., Fu, L., Shi, Y., Tan, R. B., Cui, J., & Zhou, Y. (2020). p53: A key protein that regulates pulmonary fibrosis. Oxidative Medicine and Cellular Longevity, 2020, 6635794.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Akram, K. M., Lomas, N. J., Forsyth, N. R., & Spiteri, M. A. (2014). Alveolar epithelial cells in idiopathic pulmonary fibrosis display upregulation of TRAIL, DR4 and DR5 expression with simultaneous preferential over-expression of pro-apoptotic marker p53. International Journal of Clinical and Experimental Pathology, 7(2), 552–564.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Celada, L. J., Kropski, J. A., Herazo-Maya, J. D., Luo, W., Creecy, A., Abad, A. T., Chioma, O. S., Lee, G., Hassell, N. E., Shaginurova, G. I., Wang, Y., Johnson, J. E., Kerrigan, A., Mason, W. R., Baughman, R. P., Ayers, G. D., Bernard, G. R., Culver, D. A., Montgomery, C. G., … Drake, W. P. (2018). PD-1 up-regulation on CD4(+) T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-beta1 production. Science Translational Medicine, 10(460), 8356.

    Article  Google Scholar 

  37. Ning, J., Du, H., Zhang, Y., Liu, Q., Jiang, T., Pang, Y., Tian, X., Yan, L., Niu, Y., & Zhang, R. (2022). N6-Methyladenosine modification of CDH1 mRNA promotes PM2.5-induced pulmonary fibrosis via mediating epithelial mesenchymal transition. Toxicological Sciences, 185(2), 143–157.

    Article  CAS  PubMed  Google Scholar 

  38. Elliot, S., Periera-Simon, S., Xia, X., Catanuto, P., Rubio, G., Shahzeidi, S., El Salem, F., Shapiro, J., Briegel, K., Korach, K. S., & Glassberg, M. K. (2019). MicroRNA let-7 downregulates ligand-independent estrogen receptor-mediated male-predominant pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine, 200(10), 1246–1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tao, J., Zhang, M., Wen, Z., Wang, B., Zhang, L., Ou, Y., Tang, X., Yu, X., & Jiang, Q. (2018). Inhibition of EP300 and DDR1 synergistically alleviates pulmonary fibrosis in vitro and in vivo. Biomedicine and Pharmacotherapy, 106, 1727–1733.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

TW, CN and XM conceived and designed the experiments, CN, XM and TW performed the experiments and wrote the paper, CN and XM analyzed the data. All authors approved the final version. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Tan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Eliminating Batch Effects in GSE52463 and GSE110147 Datasets. A The distribution of datasets before batch elimination. B The distribution of combined GEO datasets after batch elimination. C PCA plot before batch eliminating. D PCA plot of the combined GEO datasets after batch elimination. The dataset GSE110147 is represented in blue, while the dataset GSE52463 is depicted in red. PCA Principal component analysis, PF Pulmonary fibrosis

Supplementary file1 (PDF 5789 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, C., Meng, X. & Wang, T. Identification of Ferroptosis-Inflammation Related Hub Genes and the Disease Subtypes in Idiopathic Pulmonary Fibrosis via System Biology Approaches. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01158-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01158-x

Keywords

Navigation