Skip to main content
Log in

Prognostic and Immunotherapeutic Predictive Value of CAD Gene in Hepatocellular Carcinoma: Integrated Bioinformatics and Experimental Analysis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is a common type of cancer that ranks first in cancer-associated death worldwide. Carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) are the key components of the pyrimidine pathway, which promotes cancer development. However, the function of CAD in HCC needs to be clarified. In this study, the clinical and transcriptome data of 424 TCGA-derived HCC cases were analyzed. The results demonstrated that high CAD expression was associated with poor prognosis in HCC patients. The effect of CAD on HCC was then investigated comprehensively using GO annotation analysis, KEGG enrichment analysis, Gene Set Enrichment Analysis (GSEA), and CIBERSORT algorithm. The results showed that CAD expression was correlated with immune checkpoint inhibitors and immune cell infiltration. In addition, low CAD levels in HCC patients predicted increased sensitivity to anti-CTLA4 and PD1, while HCC patients with high CAD expression exhibited high sensitivity to chemotherapeutic and molecular-targeted agents, including gemcitabine, paclitaxel, and sorafenib. Finally, the results from clinical sample suggested that CAD expression increased remarkably in HCC compared with non-cancerous tissues. Loss of function experiments demonstrated that CAD knockdown could significantly inhibit HCC cell growth and migration both in vitro and in vivo. Collectively, the results indicated that CAD is a potential oncogene during HCC metastasis and progression. Therefore, CAD is recommended as a candidate marker and target for HCC prediction and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Please contact the corresponding author for all data requests.

References

  1. Sung, H., Ferlay, J., Siegel, R. L., et al. (2021). global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

    Article  CAS  PubMed  Google Scholar 

  2. Arnold, M., Abnet, C. C., Neale, R. E., et al. (2020). Global burden of 5 major types of gastrointestinal cancer. Gastroenterology, 159(1), 335.e15–349.e15. https://doi.org/10.1053/j.gastro.2020.02.068

  3. Wang, K., Xiang, Y. J., Yu, H. M., et al. (2024). Adjuvant sintilimab in resected high-risk hepatocellular carcinoma: a randomized, controlled, phase 2 trial. Nature Medicine. Published online January 19, 2024. https://doi.org/10.1038/s41591-023-02786-7

  4. Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2021). Cancer statistics, 2021. CA: A Cancer Journal for Clinicians, 71(1), 7–33. https://doi.org/10.3322/caac.21654

    Article  PubMed  Google Scholar 

  5. Chen, L., Zhang, C., Xue, R., et al. (2024). Deep whole-genome analysis of 494 hepatocellular carcinomas. Nature. Published online February 14, 2024. https://doi.org/10.1038/s41586-024-07054-3

  6. Chen, W., Zheng, R., Baade, P. D., et al. (2016). Cancer statistics in China, 2015. CA: A Cancer Journal for Clinicians, 66(2), 115–132. https://doi.org/10.3322/caac.21338

    Article  PubMed  Google Scholar 

  7. Bruix, J., Reig, M., & Sherman, M. (2016). Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology, 150(4), 835–853. https://doi.org/10.1053/j.gastro.2015.12.041

    Article  PubMed  Google Scholar 

  8. Vogel, A., Meyer, T., Sapisochin, G., Salem, R., & Saborowski, A. (2022). Hepatocellular carcinoma. The Lancet., 400(10360), 1345–1362. https://doi.org/10.1016/S0140-6736(22)01200-4

    Article  CAS  Google Scholar 

  9. Arabi, F., Mansouri, V., & Ahmadbeigi, N. (2022). Gene therapy clinical trials, where do we go? An overview. Biomedicine & Pharmacotherapy, 153, 113324. https://doi.org/10.1016/j.biopha.2022.113324

    Article  CAS  Google Scholar 

  10. Uddin, F., Rudin, C. M., & Sen, T. (2020). CRISPR gene therapy: Applications, limitations, and implications for the future. Frontiers in Oncology, 10, 1387. https://doi.org/10.3389/fonc.2020.01387

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bulaklak, K., & Gersbach, C. A. (2020). The once and future gene therapy. Nature Communications, 11(1), 5820. https://doi.org/10.1038/s41467-020-19505-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coleman, P. F., Suttle, D. P., & Stark, G. R. (1977). Purification from hamster cells of the multifunctional protein that initiates de novo synthesis of pyrimidine nucleotides. Journal of Biological Chemistry, 252(18), 6379–6385.

    Article  CAS  PubMed  Google Scholar 

  13. Lee, L., Kelly, R. E., Pastra-Landis, S. C., & Evans, D. R. (1985). Oligomeric structure of the multifunctional protein CAD that initiates pyrimidine biosynthesis in mammalian cells. Proceedings of the National Academy of Sciences U S A, 82(20), 6802–6806. https://doi.org/10.1073/pnas.82.20.6802

    Article  CAS  Google Scholar 

  14. Sigoillot, F. D., Sigoillot, S. M., & Guy, H. I. (2004). Breakdown of the regulatory control of pyrimidine biosynthesis in human breast cancer cells. International Journal of Cancer, 109(4), 491–498. https://doi.org/10.1002/ijc.11717

    Article  CAS  PubMed  Google Scholar 

  15. Tlsty, T. D., Margolin, B. H., & Lum, K. (1989). Differences in the rates of gene amplification in nontumorigenic and tumorigenic cell lines as measured by Luria-Delbrück fluctuation analysis. Proc Natl Acad Sci U S A., 86(23), 9441–9445. https://doi.org/10.1073/pnas.86.23.9441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khan, S., Abdelrahim, M., Samudio, I., & Safe, S. (2003). Estrogen receptor/Sp1 complexes are required for induction of cad gene expression by 17beta-estradiol in breast cancer cells. Endocrinology, 144(6), 2325–2335. https://doi.org/10.1210/en.2002-0149

    Article  CAS  PubMed  Google Scholar 

  17. Ridder, D. A., Schindeldecker, M., Weinmann, A., et al. (2021). Key enzymes in pyrimidine synthesis, CAD and CPS1, predict prognosis in hepatocellular carcinoma. Cancers (Basel)., 13(4), 744. https://doi.org/10.3390/cancers13040744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, X., Yang, K., Wu, Q., et al. (2019). Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells. Sci Transl Med., 11(504), eaau972. https://doi.org/10.1126/scitranslmed.aau4972

    Article  CAS  Google Scholar 

  19. Lv, Y., Wang, X., Li, X., et al. (2020). Nucleotide de novo synthesis increases breast cancer stemness and metastasis via cGMP-PKG-MAPK signaling pathway. PLoS Biol, 18(11), e3000872. https://doi.org/10.1371/journal.pbio.3000872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morin, A., Fritsch, L., Mathieu, J. R. R., et al. (2012). Identification of CAD as an androgen receptor interactant and an early marker of prostate tumor recurrence. The FASEB Journal, 26(1), 460–467. https://doi.org/10.1096/fj.11-191296

    Article  CAS  PubMed  Google Scholar 

  21. Xu, J. Y., Zhang, C., Wang, X., et al. (2020). Integrative proteomic characterization of human lung adenocarcinoma. Cell, 182(1), 245.e17–261.e17. https://doi.org/10.1016/j.cell.2020.05.043

  22. Zhang ,Y., Liu, X., Liu, L., Li, J., Hu, Q., & Sun, R. (2020). Expression and prognostic significance of 6A-related genes in lung adenocarcinoma. Medical Science Monitor 26:e919644. https://doi.org/10.12659/MSM.919644

  23. Liu, X. S., Zhou, L. M., Yuan, L. L., et al. (2021). NPM1 is a prognostic biomarker involved in immune infiltration of lung adenocarcinoma and associated with m6A modification and glycolysis. Frontiers in Immunology, 12, 724741. https://doi.org/10.3389/fimmu.2021.724741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Evans, D. R., & Guy, H. I. (2004). Mammalian pyrimidine biosynthesis: Fresh insights into an ancient pathway. Journal of Biological Chemistry, 279(32), 33035–33038. https://doi.org/10.1074/jbc.R400007200

    Article  CAS  PubMed  Google Scholar 

  25. Sigoillot, F. D., Kotsis, D. H., Masko, E. M., Bame, M., Evans, D. R., & Evans, H. I. G. (2007). Protein kinase C modulates the up-regulation of the pyrimidine biosynthetic complex, CAD, by MAP kinase. Frontiers in Bioscience, 12, 3892–3898. https://doi.org/10.2741/2358

    Article  CAS  PubMed  Google Scholar 

  26. Tu, H. F., Ko, C. J., Lee, C. T., et al. (2021). Afatinib exerts immunomodulatory effects by targeting the pyrimidine biosynthesis enzyme CAD. Cancer Research, 81(12), 3270–3282. https://doi.org/10.1158/0008-5472.CAN-20-3436

    Article  CAS  PubMed  Google Scholar 

  27. Del Caño-Ochoa, F., Moreno-Morcillo, M., & Ramón-Maiques, S. (2019). CAD, A multienzymatic protein at the head of de novo pyrimidine biosynthesis. SubCellular Biochemistry, 93, 505–538. https://doi.org/10.1007/978-3-030-28151-9_17

    Article  CAS  PubMed  Google Scholar 

  28. Novak, D. A., Carver, J. D., & Barness, L. A. (1994). Dietary nucleotides affect hepatic growth and composition in the weanling mouse. JPEN Journal of Parenteral and Enteral Nutrition, 18(1), 62–66. https://doi.org/10.1177/014860719401800162

    Article  CAS  PubMed  Google Scholar 

  29. Koch, J., Mayr, J. A., Alhaddad, B., et al. (2017). CAD mutations and uridine-responsive epileptic encephalopathy. Brain, 140(2), 279–286. https://doi.org/10.1093/brain/aww300

    Article  PubMed  Google Scholar 

  30. Yoshida, T., Stark, G. R., & Hoogenraad, J. (1974). Inhibition by N-(phosphonacetyl)-L-aspartate of aspartate transcarbamylase activity and drug-induced cell proliferation in mice. Journal of Biological Chemistry, 249(21), 6951–6955.

    Article  CAS  PubMed  Google Scholar 

  31. Clara, J. A., Monge, C., Yang, Y., & Takebe, N. (2020). Targeting signalling pathways and the immune microenvironment of cancer stem cells – A clinical update. Nature Reviews. Clinical Oncology, 17(4), 204–232. https://doi.org/10.1038/s41571-019-0293-2

    Article  PubMed  Google Scholar 

  32. Zanconato, F., Cordenonsi, M., & Piccolo, S. (2016). YAP/TAZ at the roots of cancer. Cancer Cell, 29(6), 783–803. https://doi.org/10.1016/j.ccell.2016.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, S., Zhang, Z., Qian, W., et al. (2018). Angiogenesis and vasculogenic mimicry are inhibited by 8-Br-cAMP through activation of the cAMP/PKA pathway in colorectal cancer. Oncotargets and Therapy, 11, 3765–3774. https://doi.org/10.2147/OTT.S164982

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pelletier, J., Thomas, G., & Volarević, S. (2018). Ribosome biogenesis in cancer: New players and therapeutic avenues. Nature Reviews Cancer, 18(1), 51–63. https://doi.org/10.1038/nrc.2017.104

    Article  CAS  PubMed  Google Scholar 

  35. de Visser, K. E., & Joyce, J. A. (2023). The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell, 41(3), 374–403. https://doi.org/10.1016/j.ccell.2023.02.016

    Article  CAS  PubMed  Google Scholar 

  36. Yang, X., Yang, C., Zhang, S., et al. (2024). Precision treatment in advanced hepatocellular carcinoma. Cancer Cell, 42(2), 180–197. https://doi.org/10.1016/j.ccell.2024.01.007

    Article  CAS  PubMed  Google Scholar 

  37. Kim, H. D., Jung, S., Lim, H. Y., et al. (2024). Regorafenib plus nivolumab in unresectable hepatocellular carcinoma: the phase 2 RENOBATE trial. Nature Medicine. Published online February 19, 2024. https://doi.org/10.1038/s41591-024-02824-y

Download references

Funding

This study was supported by the National Natural Science Foundation of China (82072618), the National Key Research and Development Program of China (2022YFC2503700, 2022YFC2503705), and Shanghai Municipal Health Commission (2023ZZ02005).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: S-QC, JS, XW, J-KF, F-FM, and Y-CH; Administrative support: S-QC and JS; Provision of study materials: S-QC; Study validation and data curation: XW, J-KF, F-FM, Y-CH, Y-QZ, L-HL, QW, J-XS, and CL; Data analysis and interpretation: XW, J-KF, and F-FM; Manuscript writing: All authors; Final approval of manuscript: All authors.

Corresponding authors

Correspondence to Jie Shi or Shu-Qun Cheng.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical Approval

The research protocol and acquirement of patients’ tumor samples were approved by the Institutional Ethics Committee of Eastern Hepatobiliary Surgery Hospital. All animal experiments were in agreement with the guidelines for the Care and Use of Laboratory Animals and were approved by the Ethics and Welfare Committee for Animal Research at the Yueyang Hospital of Integrated Traditional Chinese and Western Medicine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 51 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Feng, JK., Mao, FF. et al. Prognostic and Immunotherapeutic Predictive Value of CAD Gene in Hepatocellular Carcinoma: Integrated Bioinformatics and Experimental Analysis. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01125-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01125-6

Keywords

Navigation