Skip to main content

Advertisement

Log in

Hypoxia-Challenged Pancreatic Adenocarcinoma Cell-Derived Exosomal circR3HCC1L Drives Tumor Growth Via Upregulating PKM2 Through Sequestering miR-873-5p

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Pancreatic adenocarcinoma (PAAD) is a fatal disease with poor survival. Increasing evidence show that hypoxia-induced exosomes are associated with cancer progression. Here, we aimed to investigate the function of hsa_circ_0007678 (circR3HCC1L) and hypoxic PAAD cell-derived exosomal circR3HCC1L in PAAD progression. Through the exoRBase 2.0 database, we screened for a circular RNA circR3HCC1L related to PAAD. Changes of circR3HCC1L in PAAD samples and cells were analyzed with real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, migration, invasion were analyzed by colony formation, cell counting, and transwell assays. Measurements of glucose uptake and lactate production were done using corresponding kits. Several protein levels were detected by western blotting. The regulation mechanism of circR3HCC1L was verified by dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays. Exosomes were separated by differential ultracentrifugation. Animal experiments were used to verify the function of hypoxia-derived exosomal circR3HCC1L. CircR3HCC1L was upregulated in PAAD samples and hypoxic PAAD cells. Knockdown of circR3HCC1L decreased hypoxia-driven PAAD cell proliferation, migration, invasion, and glycolysis. Hypoxic PAAD cell-derived exosomes had higher levels of circR3HCC1L, hypoxic PAAD cell-derived exosomal circR3HCC1L promoted normoxic cancer cell malignant transformation and glycolysis in vitro and xenograft tumor growth in mouse models in vivo. Mechanistically, circR3HCC1L regulated pyruvate kinase M2 (PKM2) expression via sponging miR-873-5p. Also, PKM2 overexpression or miR-873-5p silencing offset circR3HCC1L knockdown-mediated effects on hypoxia-challenged PAAD cell malignant transformation and glycolysis. Hypoxic PAAD cell-derived exosomal circR3HCC1L facilitated PAAD progression through the miR-873-5p/PKM2 axis, highlighting the contribution of hypoxic PAAD cell-derived exosomal circR3HCC1L in PAAD.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Lu, X., & Kang, Y. (2010). Hypoxia and hypoxia-inducible factors: Master regulators of metastasis. Clinical Cancer Research, 16(24), 5928–5935. https://doi.org/10.1158/1078-0432.ccr-10-1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ostergaard, L., Tietze, A., Nielsen, T., Drasbek, K. R., Mouridsen, K., Jespersen, S. N., & Horsman, M. R. (2013). The relationship between tumor blood flow, angiogenesis, tumor hypoxia, and aerobic glycolysis. Cancer Research, 73(18), 5618–5624. https://doi.org/10.1158/0008-5472.can-13-0964

    Article  CAS  PubMed  Google Scholar 

  3. Yang, M., & Zhang, C. Y. (2021). Diagnostic biomarkers for pancreatic cancer: An update. World Journal of Gastroenterology, 27(45), 7862–7865. https://doi.org/10.3748/wjg.v27.i45.7862

    Article  PubMed  PubMed Central  Google Scholar 

  4. Poels, T. T., & Vuijk, F. A. (2021). Molecular targeted positron emission tomography imaging and radionuclide therapy of pancreatic ductal adenocarcinoma. Cancers, 13(24), 6164. https://doi.org/10.3390/cancers13246164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Daniel, S. K., Sullivan, K. M., Labadie, K. P., & Pillarisetty, V. G. (2019). Hypoxia as a barrier to immunotherapy in pancreatic adenocarcinoma. Clinical and Translational Medicine, 8(1), 10. https://doi.org/10.1186/s40169-019-0226-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jia, Y., Li, H. Y., Wang, Y., Wang, J., Zhu, J. W., Wei, Y. Y., Lou, L., Chen, X., & Mo, S. J. (2021). Crosstalk between hypoxia-sensing ULK1/2 and YAP-driven glycolysis fuels pancreatic ductal adenocarcinoma development. International Journal of Biological Sciences, 17(11), 2772–2794. https://doi.org/10.7150/ijbs.60018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pegtel, D. M., & Gould, S. J. (2019). Exosomes. Annual Review of Biochemistry, 88, 487–514. https://doi.org/10.1146/annurev-biochem-013118-111902

    Article  CAS  PubMed  Google Scholar 

  8. Mathivanan, S., Ji, H., & Simpson, R. J. (2010). Exosomes: Extracellular organelles important in intercellular communication. Journal of Proteomics, 73(10), 1907–1920. https://doi.org/10.1016/j.jprot.2010.06.006

    Article  CAS  PubMed  Google Scholar 

  9. Chen, B. Y., Sung, C. W., Chen, C., Cheng, C. M., Lin, D. P., Huang, C. T., & Hsu, M. Y. (2019). Advances in exosomes technology. Clinica Chimica Acta, 493, 14–19. https://doi.org/10.1016/j.cca.2019.02.021

    Article  CAS  Google Scholar 

  10. Jan, A. T., & Rahman, S. (2019). Biology, pathophysiological role, and clinical implications of exosomes: A critical. Appraisal. https://doi.org/10.3390/cells8020099

    Article  Google Scholar 

  11. Wortzel, I., Dror, S., Kenific, C. M., & Lyden, D. (2019). Exosome-mediated metastasis: Communication from a distance. Developmental Cell, 49(3), 347–360. https://doi.org/10.1016/j.devcel.2019.04.011

    Article  CAS  PubMed  Google Scholar 

  12. Tai, Y. L., Chen, K. C., Hsieh, J. T., & Shen, T. L. (2018). Exosomes in cancer development and clinical applications. Cancer Science, 109(8), 2364–2374. https://doi.org/10.1111/cas.13697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dai, J., Su, Y., Zhong, S., Cong, L., Liu, B., Yang, J., & Tao, Y. (2020). Exosomes: Key players in cancer and potential therapeutic strategy. Signal Transduction and Targeted Therapy, 5(1), 145. https://doi.org/10.1038/s41392-020-00261-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kristensen, L. S., Andersen, M. S., Stagsted, L. V. W., Ebbesen, K. K., & Hansen, T. B. (2019). The biogenesis, biology and characterization of circular RNAs. Nature Reviews Genetics, 20(11), 675–691. https://doi.org/10.1038/s41576-019-0158-7

    Article  CAS  PubMed  Google Scholar 

  15. Xiao, M. S., Ai, Y., & Wilusz, J. E. (2020). Biogenesis and functions of circular RNAs come into focus. Trends in Cell Biology, 30(3), 226–240. https://doi.org/10.1016/j.tcb.2019.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo, X., Zhou, Q., Su, D., Luo, Y., Fu, Z., Huang, L., Li, Z., Jiang, D., Kong, Y., Li, Z., Chen, R., & Chen, C. (2020). Circular RNA circBFAR promotes the progression of pancreatic ductal adenocarcinoma via the miR-34b-5p/MET/Akt axis. Molecular Cancer, 19(1), 83. https://doi.org/10.1186/s12943-020-01196-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guan, H., Luo, W., Liu, Y., & Li, M. (2021). Novel circular RNA circSLIT2 facilitates the aerobic glycolysis of pancreatic ductal adenocarcinoma via miR-510-5p/c-Myc/LDHA axis. Cell Death & Disease, 12(7), 645. https://doi.org/10.1038/s41419-021-03918-y

    Article  CAS  Google Scholar 

  18. Rong, Z., Shi, S., Tan, Z., Xu, J., Meng, Q., Hua, J., Liu, J., Zhang, B., Wang, W., Yu, X., & Liang, C. (2021). Circular RNA CircEYA3 induces energy production to promote pancreatic ductal adenocarcinoma progression through the miR-1294/c-Myc axis. Molecular Cancer, 20(1), 106. https://doi.org/10.1186/s12943-021-01400-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang, H., Zhang, H., Yang, Y., Wang, X., Deng, T., Liu, R., Ning, T., Bai, M., Li, H., Zhu, K., Li, J., Fan, Q., Ying, G., & Ba, Y. (2020). Hypoxia induced exosomal circRNA promotes metastasis of Colorectal Cancer via targeting GEF-H1/RhoA axis. Theranostics, 10(18), 8211–8226. https://doi.org/10.7150/thno.44419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zeng, Z., Zhao, Y., Chen, Q., Zhu, S., Niu, Y., Ye, Z., Hu, P., Chen, D., Xu, P., Chen, J., Hu, C., Hu, Y., Xu, F., Tang, J., Wang, F., & Han, S. (2021). Hypoxic exosomal HIF-1α-stabilizing circZNF91 promotes chemoresistance of normoxic pancreatic cancer cells via enhancing glycolysis. Oncogene, 40(36), 5505–5517. https://doi.org/10.1038/s41388-021-01960-w

    Article  CAS  PubMed  Google Scholar 

  21. Zhan, Y., Du, J., Min, Z., Ma, L., Zhang, W., Zhu, W., & Liu, Y. (2021). Carcinoma-associated fibroblasts derived exosomes modulate breast cancer cell stemness through exonic circHIF1A by miR-580-5p in hypoxic stress. Cell Death Discov, 7(1), 141. https://doi.org/10.1038/s41420-021-00506-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shang, A., Gu, C., Wang, W., Wang, X., Sun, J., Zeng, B., Chen, C., Chang, W., Ping, Y., Ji, P., Wu, J., Quan, W., Yao, Y., Zhou, Y., Sun, Z., & Li, D. (2020). Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142–3p/miR-506–3p- TGF-β1 axis. Molecular Cancer, 19(1), 117. https://doi.org/10.1186/s12943-020-01235-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, X., Sai, B., Wang, F., Wang, L., Wang, Y., Zheng, L., Li, G., Tang, J., & Xiang, J. (2019). Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Molecular Cancer, 18(1), 40. https://doi.org/10.1186/s12943-019-0959-5

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lin, J., Wang, X., Zhai, S., Shi, M., Peng, C., Deng, X., Fu, D., Wang, J., & Shen, B. (2022). Hypoxia-induced exosomal circPDK1 promotes pancreatic cancer glycolysis via c-myc activation by modulating miR-628-3p/BPTF axis and degrading BIN1. Journal of Hematology Oncology, 15(1), 128. https://doi.org/10.1186/s13045-022-01348-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xue, M., Chen, W., Xiang, A., Wang, R., Chen, H., Pan, J., Pang, H., An, H., Wang, X., Hou, H., & Li, X. (2017). Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1. Molecular Cancer, 16(1), 143. https://doi.org/10.1186/s12943-017-0714-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rankin, E. B., & Giaccia, A. J. (2016). Hypoxic control of metastasis. Science, 352(6282), 175–180. https://doi.org/10.1126/science.aaf4405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zahra, K., Dey, T., Ashish, Mishra, S. P., & Pandey, U. (2020). Pyruvate kinase M2 and cancer: The role of PKM2 in promoting tumorigenesis. Frontiers in Oncology. https://doi.org/10.3389/fonc.2020.00159

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ackerman, D., & Simon, M. C. (2014). Hypoxia, lipids, and cancer: Surviving the harsh tumor microenvironment. Trends in Cell Biology, 24(8), 472–478. https://doi.org/10.1016/j.tcb.2014.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, T., Mao, C., Wang, X., Shi, Y., & Tao, Y. (2020). Epigenetic crosstalk between hypoxia and tumor driven by HIF regulation. Journal of Experimental Clinical Cancer Research, 39(1), 224. https://doi.org/10.1186/s13046-020-01733-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumar, A., & Deep, G. (2020). Exosomes in hypoxia-induced remodeling of the tumor microenvironment. Cancer Letter, 488, 1–8. https://doi.org/10.1016/j.canlet.2020.05.018

    Article  CAS  Google Scholar 

  31. Zhang, P. F., Gao, C., Huang, X. Y., Lu, J. C., Guo, X. J., Shi, G. M., Cai, J. B., & Ke, A. W. (2020). Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Molecular Cancer, 19(1), 110. https://doi.org/10.1186/s12943-020-01222-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xie, M., Yu, T., Jing, X., Ma, L., Fan, Y., Yang, F., Ma, P., Jiang, H., Wu, X., & Shu, Y. (2020). Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582–3p/HUR/VEGF axis and suppressing HSP90 degradation. Molecular Cancer, 19(1), 112. https://doi.org/10.1186/s12943-020-01208-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mitra, A., Pfeifer, K., & Park, K.-S. (2018). Circular RNAs and competing endogenous RNA (ceRNA) networks. Translational Cancer Research, 7(Suppl 5), S624–S628.

    Article  CAS  PubMed  Google Scholar 

  34. Azoitei, N., Becher, A., Steinestel, K., Rouhi, A., Diepold, K., Genze, F., Simmet, T., & Seufferlein, T. (2016). PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation. Molecular Cancer. https://doi.org/10.1186/s12943-015-0490-2

    Article  PubMed  PubMed Central  Google Scholar 

  35. Guo, Q., Wang, T., Yang, Y., Gao, L., Zhao, Q., Zhang, W., Xi, T., & Zheng, L. (2020). Transcriptional factor Yin Yang 1 promotes the stemness of breast cancer cells by suppressing miR-873–5p transcriptional activity. Molecular Therapy-Nucleic Acids, 21, 527–541. https://doi.org/10.1016/j.omtn.2020.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu, T., Zhang, D. L., Wang, J. M., Jiang, J. Y., & Du, X. (2020). TRIM29 inhibits miR-873–5P biogenesis via CYTOR to upregulate fibronectin 1 and promotes invasion of papillary thyroid cancer cells. Cell Death Disease, 11(9), 813. https://doi.org/10.1038/s41419-020-03018-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, S., & Lin, L. (2021). Long noncoding RNA MCF2L-AS1 promotes the cancer stem cell-like traits in non-small cell lung cancer cells through regulating miR-873–5p level. Environmental Toxicology, 36(7), 1457–1465. https://doi.org/10.1002/tox.23142

    Article  CAS  PubMed  Google Scholar 

  38. Yang, X. L., Ma, Y. S., Liu, Y. S., Jiang, X. H., Ding, H., Shi, Y., Jia, C. Y., Lu, G. X., Zhang, D. D., Wang, H. M., Wang, P. Y., Lv, Z. W., Yu, F., Liu, J. B., & Fu, D. (2021). microRNA-873 inhibits self-renewal and proliferation of pancreatic cancer stem cells through pleckstrin-2-dependent PI3K/AKT pathway. Cellular Signalling. https://doi.org/10.1016/j.cellsig.2021.110025

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mokhlis, H. A., Bayraktar, R., Kabil, N. N., Caner, A., Kahraman, N., Rodriguez-Aguayo, C., Zambalde, E. P., Sheng, J., Karagoz, K., Kanlikilicer, P., Abdel Aziz, A. A. H., Abdelghany, T. M., Ashour, A. A., Wong, S., Gatza, M. L., Calin, G. A., Lopez-Berestein, G., & Ozpolat, B. (2019). The Modulatory role of MicroRNA-873 in the progression of KRAS-driven cancers. Molecular Therapy-Nucleic Acids, 14, 301–317. https://doi.org/10.1016/j.omtn.2018.11.019

    Article  CAS  PubMed  Google Scholar 

  40. Zhu, S., Guo, Y., Zhang, X., Liu, H., Yin, M., Chen, X., & Peng, C. (2021). Pyruvate kinase M2 (PKM2) in cancer and cancer therapeutics. Cancer Letters, 503, 240–248. https://doi.org/10.1016/j.canlet.2020.11.018

    Article  CAS  PubMed  Google Scholar 

  41. Luo, W., Hu, H., Chang, R., Zhong, J., Knabel, M., O’Meally, R., Cole, R. N., Pandey, A., & Semenza, G. L. (2011). Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell, 145(5), 732–744. https://doi.org/10.1016/j.cell.2011.03.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koo, H., & Byun, S. (2021). PKM2 regulates HSP90-mediated stability of the IGF-1R precursor protein and promotes cancer cell survival during hypoxia. Cancers. https://doi.org/10.3390/cancers13153850

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lockney, N. A., Zhang, M., Lu, Y., Sopha, S. C., Washington, M. K., Merchant, N., Zhao, Z., Shyr, Y., Chakravarthy, A. B., & Xia, F. (2015). Pyruvate kinase muscle isoenzyme 2 (PKM2) expression is associated with overall survival in pancreatic ductal adenocarcinoma. Journal of Gastrointestinal Cancer, 46(4), 390–398. https://doi.org/10.1007/s12029-015-9764-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yokoyama, M., Tanuma, N., Shibuya, R., Shiroki, T., Abue, M., Yamamoto, K., Miura, K., Yamaguchi, K., Sato, I., Tamai, K., & Satoh, K. (2018). Pyruvate kinase type M2 contributes to the development of pancreatic ductal adenocarcinoma by regulating the production of metabolites and reactive oxygen species. International Journal of Oncology, 52(3), 881–891. https://doi.org/10.3892/ijo.2018.4258

    Article  CAS  PubMed  Google Scholar 

  45. Cheng, T. Y., Yang, Y. C., Wang, H. P., Tien, Y. W., Shun, C. T., Huang, H. Y., Hsiao, M., & Hua, K. T. (2018). Pyruvate kinase M2 promotes pancreatic ductal adenocarcinoma invasion and metastasis through phosphorylation and stabilization of PAK2 protein. Oncogene, 37(13), 1730–1742. https://doi.org/10.1038/s41388-017-0086-y

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Clinical Research Fund project of Zhejiang Medical Association [Grant no. 2019ZYC-A107]. Beijing medical and health foundation [Grant no. B20318EN]. Zhejiang Soft Science Research Program [Grant no. 2021C25G2250721]. The Project of Zhejiang Province Traditional Chinese Medicine Science and Technology Plan (Grant no. 2024ZL949).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuping Zhou or Xinhua Zhou.

Ethics declarations

Ethics Approval

Written informed consents were obtained from all participants and this study was permitted by the Ethics Committee of Ningbo Medical Center Lihuili Hospital.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12033_2024_1091_MOESM1_ESM.tif

Supplementary file1 (TIF 2168 KB) A and B Knockdown efficiency of circR3HCC1L in PAAD cells infected with lentivirus carrying sh-circR3HCC1L was determined by RT-qPCR, with sh-NC as a control (n = 3 biological replicates). CF The transfection efficiencies of miR-873-5p mimic (C and D) and inhibitor (E and F) were estimated by RT-qPCR, with miR-NC or anti-NC as a control (n = 3 biological replicates). G RT-qPCR analyzed miR-873-5p in PAAD cells with respect to the hTERT-HPNE cell line (n = 3 biological replicates). H and I Protein levels of PKM2 in PAAD cells (normalized to the hTERT-HPNE cell line) (n = 3 biological replicates) and samples (normalized to paired non-tumor samples) (n = 4) were detected by western blotting. J and K Overexpression efficiency of the oe-PKM2 plasmid was evaluated using western blotting (normalized to vector) (n = 3 biological replicates). **P < 0.01 and ***P < 0.001

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhou, S., Ruan, Y. et al. Hypoxia-Challenged Pancreatic Adenocarcinoma Cell-Derived Exosomal circR3HCC1L Drives Tumor Growth Via Upregulating PKM2 Through Sequestering miR-873-5p. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01091-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01091-z

Keywords

Navigation