Skip to main content

Advertisement

Log in

Circ_0082374 Promotes the Tumorigenesis and Suppresses Ferroptosis in Non-small Cell Lung Cancer by Up-Regulating GPX4 Through Sequestering miR-491-5p

  • Origina lPaper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Circular RNAs (circRNAs) have been identified to be dysregulated in non-small cell lung cancer (NSCLC) and implicated in the progression of this cancer. Here, this work aimed to investigate the role and mechanism of circ_0082374 on NSCLC progression. Levels of circ_0082374, miR-491-5p, GPX4 (glutathione peroxidase 4) and epithelial-mesenchymal transition (EMT)-related proteins were examined by quantitative real-time PCR or western blotting, respectively. Cell proliferation and metastasis were detected using cell counting kit-8, colony formation, EdU, transwell, and Scratch assays. Cell ferroptosis was evaluated by measuring cell survival after the treatment of different ferroptosis inducers or inhibitors, as well as the accumulation of intracellular reactive oxygen species (ROS), ferrous iron (Fe2+) and malondialdehyde (MDA). The binding between miR-491-5p and circ_0082374 or GPX4 was confirmed using dual-luciferase reporter and RNA pull-down assays. In vivo experiments were conducted using murine xenograft assay and immunohistochemistry. Circ_0082374 was a stable circRNA with high expression in NSCLC tissues and cells. Functionally, circ_0082374 silencing suppressed NSCLC cell proliferation and metastasis. Moreover, its down-regulation enhanced ferroptosis by decreasing iron and lipid peroxidation accumulation. Mechanistically, circ_0082374 could indirectly up-regulate GPX4 expression via miR-491-5p, indicating the circ_0082374/miR-491-5p/GPX4 competitive endogenous RNAs (ceRNA) network. Rescue experiments demonstrated that the miR-491-5p/GPX4 axis mediated the regulatory effects of circ_0082374 exerted on NSCLC cells. Moreover, knockdown of circ_0082374 impeded NSCLC growth and EMT via regulating miR-491-5p and GPX4. Circ_0082374 silencing could suppress NSCLC cell proliferation, metastasis and induce ferroptosis through miR-491-5p/GPX4 axis, suggesting a novel therapeutic approach for NSCLC patients.

Graphical Abstract

Circ_0082374 acts as a sponge for miR-491-5p, and up-regulates GPX4 expression through sequestering miR-491-5p, thereby promoting NSCLC cell proliferation, metastasis and suppressing ferroptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The analyzed data sets generated during the present study are available from the corresponding author on reasonable request.

Abbreviations

NSCLC:

Non-small cell lung cancer

circRNA:

Circular RNAs

GPX4:

Glutathione peroxidase 4

EMT:

Epithelial-mesenchymal transition

ROS:

Reactive oxyen species

miRNA/miR:

MicroRNA

ceRNA:

Competing endogenous RNA

CCK-8:

Cell counting kit-8

EdU:

5-Ethynyl-2′-deoxyuridine

MDA:

Malondialdehyde

IHC:

Immunohistochemistry

NC:

Negative control

qRT-PCR:

Quantitative real-time PCR

Fe2+:

Ferrous iron

ShRNA:

Short hairpin RNA

Fer-1:

Ferrostatin-1

References

  1. Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: A Cancer Journal for Clinicians, 69(1), 7–34.

    PubMed  Google Scholar 

  2. Gridelli, C., Rossi, A., Carbone, D. P., Guarize, J., Karachaliou, N., Mok, T., Petrella, F., Spaggiari, L., & Rosell, R. (2015). Non-small-cell lung cancer. Nature Reviews Disease Primers, 1, 15009.

    Article  PubMed  Google Scholar 

  3. Torre, L. A., Siegel, R. L., & Jemal, A. (2016). Lung cancer statistics. Advances in Experimental Medicine and Biology, 893, 1–19.

    Article  PubMed  Google Scholar 

  4. Sun, H., & Sun, Y. (2019). Lidocaine inhibits proliferation and metastasis of lung cancer cell via regulation of miR-539/EGFR axis. Artificial Cells, Nanomedicine, and Biotechnology., 47(1), 2866–2874.

    Article  CAS  PubMed  Google Scholar 

  5. Zou, J., Wang, L., Tang, H., Liu, X., Peng, F., & Peng, C. (2021). Ferroptosis in non-small cell lung cancer: Progression and therapeutic potential on it. International Journal of Molecular Sciences, 22(24), 13335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Geng, Y., Jiang, J., & Wu, C. (2018). Function and clinical significance of circRNAs in solid tumors. Journal of Hematology & Oncology, 11(1), 98.

    Article  Google Scholar 

  7. Chen, L.-L., & Yang, L. (2015). Regulation of circRNA biogenesis. RNA Biology, 12(4), 381–388.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Arnaiz, E., Sole, C., Manterola, L., Iparraguirre, L., Otaegui, D., & Lawrie, C. H. (2019). CircRNAs and cancer: Biomarkers and master regulators. Seminars in Cancer Biology, 58, 90–99.

    Article  CAS  PubMed  Google Scholar 

  9. Vo, J. N., Cieslik, M., Zhang, Y., Shukla, S., Xiao, L., Zhang, Y., Wu, Y. M., Dhanasekaran, S. M., Engelke, C. G., & Cao, X. (2019). The landscape of circular RNA in cancer. Cell, 176(4), 869-881.e813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang, G., Liang, M., Liu, H., Huang, J., Li, P., Wang, C., Zhang, Y., Lin, Y., & Jiang, X. (2020). CircRNA hsa_circRNA_104348 promotes hepatocellular carcinoma progression through modulating miR-187-3p/RTKN2 axis and activating Wnt/β-catenin pathway. Cell Death & Disease, 11(12), 1065.

    Article  CAS  Google Scholar 

  11. Yang, H., Li, X., Meng, Q., Sun, H., Wu, S., Hu, W., Liu, G., Li, X., Yang, Y., & Chen, R. (2020). CircPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer. Molecular Cancer, 19(1), 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, D., Ma, W., Ke, Z., & Xie, F. (2018). CircRNA hsa_circ_100395 regulates miR-1228/TCF21 pathway to inhibit lung cancer progression. Cell Cycle, 17(16), 2080–2090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, B., Li, B., & Si, T. (2020). Knockdown of circ0082374 inhibits cell viability, migration, invasion and glycolysis in glioma cells by miR-326/SIRT1. Brain Research, 1748, 147108.

    Article  CAS  PubMed  Google Scholar 

  14. Hong, W., Xue, M., Jiang, J., Zhang, Y., & Gao, X. (2020). Circular RNA circ-CPA4/ let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC). Journal of Experimental & Clinical Cancer Research, 39(1), 149.

    Article  CAS  Google Scholar 

  15. Tao, W., Cao, C., Ren, G., & Zhou, D. (2021). Circular RNA circCPA4 promotes tumorigenesis by regulating miR-214-3p/TGIF2 in lung cancer. Thoracic Cancer, 12(24), 3356–3369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, Z., Wang, W., Abdul Razak, S. R., Han, T., Ahmad, N. H., & Li, X. (2023). Ferroptosis as a potential target for cancer therapy. Cell Death & Disease, 14(7), 460.

    Article  Google Scholar 

  17. Kuche, K., Yadav, V., Patel, M., Chaudhari, D., Date, T., & Jain, S. (2023). Enhancing anti-cancer potential by delivering synergistic drug combinations via phenylboronic acid modified PLGA nanoparticles through ferroptosis-based therapy. Biomaterials Advances, 156, 213700.

    Article  PubMed  Google Scholar 

  18. Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K., & Kjems, J. (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495(7441), 384–388.

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Salmena, L., Poliseno, L., Tay, Y., Kats, L., & Pandolfi, P. P. (2011). A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell, 146(3), 353–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, X., Li, J., Kang, R., Klionsky, D. J., & Tang, D. (2021). Ferroptosis: Machinery and regulation. Autophagy, 17(9), 2054–2081.

    Article  CAS  PubMed  Google Scholar 

  21. Fedchenko, N., & Reifenrath, J. (2014). Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue—A review. Diagnostic Pathology. https://doi.org/10.1186/s13000-014-0221-9

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yang, W. S., & Stockwell, B. R. (2016). Ferroptosis: Death by lipid peroxidation. Trends in Cell Biology, 26(3), 165–176.

    Article  CAS  PubMed  Google Scholar 

  23. Luo, M., Wu, L., Zhang, K., Wang, H., Zhang, T., Gutierrez, L., O’Connell, D., Zhang, P., Li, Y., & Gao, T. (2018). miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death and Differentiation, 25(8), 1457–1472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jeck, W. R., Sorrentino, J. A., Wang, K., Slevin, M. K., Burd, C. E., Liu, J., Marzluff, W. F., & Sharpless, N. E. (2013). Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 19(2), 141–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, Y., Cai, Z., Liang, J., Chai, E., Lu, A., & Shang, Y. (2020). CircCPA4 promotes the malignant phenotypes in glioma via miR-760/MEF2D axis. Neurochemical Research, 45(12), 2903–2913.

    Article  CAS  PubMed  Google Scholar 

  26. Yang, S., Zhao, Y., Wang, L., Liu, C., Lu, Y., Fang, Z., Shi, H., Zhang, W., & Wu, X. (2019). MicroRNA-4712-5p promotes proliferation of the vulvar squamous cell carcinoma cell line A431 by targeting PTEN through the AKT/cyclin D1 signaling pathways. Oncology Reports, 42(5), 1689–1698.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu, L., Wu, H., Wan, X., Liu, L., He, Y., Zhu, L., Liu, S., Yao, H., & Zhu, Z. (2018). MicroRNA-585 suppresses tumor proliferation and migration in gastric cancer by directly targeting MAPK1. Biochemical and Biophysical Research Communications, 499(1), 52–58.

    Article  CAS  PubMed  Google Scholar 

  28. Rupaimoole, R., Calin, G. A., Lopez-Berestein, G., & Sood, A. K. (2016). miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discovery., 6(3), 235–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu, F., Ji, A., Zhang, Z., Li, J., & Li, P. (2021). miR-491-5p inhibits the proliferation and migration of A549 cells by FOXP4. Experimental and Therapeutic Medicine., 21(6), 622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gong, F., Ren, P., Zhang, Y., Jiang, J., & Zhang, H. (2016). MicroRNAs-491-5p suppresses cell proliferation and invasion by inhibiting IGF2BP1 in non-small cell lung cancer. American Journal of Translational Research, 8(2), 485–495.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ge, W., Chi, H., Tang, H., Xu, J., Wang, J., Cai, W., & Ma, H. (2021). Circular RNA CELF1 drives immunosuppression and anti-PD1 therapy resistance in non-small cell lung cancer via the miR-491-5p/EGFR axis. Aging, 13(22), 24560–24579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, W. S., SriRamaratnam, R., Welsch, M. E., Shimada, K., Skouta, R., Viswanathan, V. S., Cheah, J. H., Clemons, P. A., Shamji, A. F., & Clish, C. B. (2014). Regulation of ferroptotic cancer cell death by GPX4. Cell, 156(1–2), 317–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brigelius-Flohé, R., & Maiorino, M. (2013). Glutathione peroxidases. Biochimica et Biophysica Acta, 1830(5), 3289–3303.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Mengdi Fan and Zhibo Zhou designed and performed the research; Xianyin Sang analyzed the data; Zongyu Li wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xianyin Sang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval and Consent to Participate

Written informed consents were obtained from all participants and this study was permitted by the Ethics Committee of Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College. The animal study has obtained the assent of the Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College Animal Care and Use Committee.

Research Involving Human and Animal Rights

Animal studies were performed in compliance with the ARRIVE guidelines and the Basel Declaration. All animals received humane care according to the National Institutes of Health (USA) guidelines.

Consent for Publication

Written informed consents were obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12033_2024_1059_MOESM1_ESM.tif

Supplementary file1 (TIF 220 KB)—Circ_0082374/miR-491-5p axis can regulate GPX4 in NSCLC cells. (A, B) The effects of circ_0082374/miR-491-5p axis on GPX4 expression was evaluated by western blotting. **P<0.01, ***P<0.001

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Fan, M., Zhou, Z. et al. Circ_0082374 Promotes the Tumorigenesis and Suppresses Ferroptosis in Non-small Cell Lung Cancer by Up-Regulating GPX4 Through Sequestering miR-491-5p. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01059-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01059-z

Keywords

Navigation