Skip to main content

Advertisement

Log in

Silencing circLDLRAD3 Inhibits Lung Cancer Progression by Regulating the miR-497-5p/PFKP Axis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Purpose

Lung cancer is one of the leading causes of death worldwide. Recent studies have shown that circular RNAs are dysregulated in a variety of cancers, but the mechanism in lung cancer is still indistinct. In our work, we explored the action mechanism of circLDLRAD3 in lung cancer.

Methods

The abundance of circLDLRAD3, microRNA-497-5p (miR-497-5p) and platelet-type PFK (PFKP) was measured by real-time quantitative polymerase chain reaction (RT-qPCR) in lung cancer. Meanwhile, the level of PFKP was quantified by western blot. Cell counting kit-8 (CCK-8), 5-Ethynyl-2’-deoxyuridine (EdU) assay, transwell assay, wound healing assay, flow cytometry, western blot, immunohistochemical (IHC) assay and glycolysis metabolism analysis were performed for functional analyses. Furthermore, the interplay between miR-497-5p and circLDLRAD3 or FKPF was detected by the dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. Eventually, the in vivo experiments were applied to measure the role of circLDLRAD3.

Result

The levels of circLDLRAD3 and PFKP were increased. Silencing circLDLRAD3 inhibited cell viability, proliferation, migration, invasion and glycolysis metabolism and promoted cell apoptosis in lung cancer cells. In mechanism, circLDLRAD3 regulated PFKP level as a miR-497-5p sponge. MiR-497-5p suppressed the progression of lung cancer by inhibiting PFKP. In addition, circLDLRAD3 knockdown also inhibited tumor growth in vivo.

Conclusion

CircLDLRAD3 promoted the development of lung cancer through increasing PFKP expression by regulating miR-497-5p, which also provided a potential targeted therapy for lung cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nasim, F., Sabath, B. F., & Eapen, G. A. (2019). Lung Cancer. Medical Clinics of North America, 103(3), 463–473. https://doi.org/10.1016/j.mcna.2018.12.006.

    Article  PubMed  Google Scholar 

  2. Rodriguez-Canales, J., Parra-Cuentas, E., & Wistuba, I. I. (2016). Diagnosis and molecular classification of Lung Cancer. Cancer Treatment and Research, 170, 25–46. https://doi.org/10.1007/978-3-319-40389-2_2.

    Article  PubMed  Google Scholar 

  3. Rivera, G. A., & Wakelee, H. (2016). Lung Cancer in Never smokers. Advances in Experimental Medicine and Biology, 893, 43–57. https://doi.org/10.1007/978-3-319-24223-1_3.

    Article  PubMed  Google Scholar 

  4. Schwartz, A. G., & Cote, M. L. (2016). Epidemiology of Lung Cancer. Advances in Experimental Medicine and Biology, 893, 21–41. https://doi.org/10.1007/978-3-319-24223-1_2.

    Article  PubMed  Google Scholar 

  5. McCarthy, W. J., Meza, R., Jeon, J., & Moolgavkar, S. H. (2012). Chapter 6: Lung cancer in never smokers: Epidemiology and risk prediction models. Risk Analysis, 32(Suppl 1), 69–84. https://doi.org/10.1111/j.1539-6924.2012.01768.x. Suppl 1.

    Article  Google Scholar 

  6. Maghfoor, I., & Perry, M. C. (2005). Lung cancer. Ann Saudi Med, 25(1), 1–12. https://doi.org/10.5144/0256-4947.2005.1.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Thorgeirsson, T. E., Geller, F., Sulem, P., Rafnar, T., Wiste, A., Magnusson, K. P., Manolescu, A., Thorleifsson, G., Stefansson, H., Ingason, A., Stacey, S. N., Bergthorsson, J. T., Thorlacius, S., Gudmundsson, J., Jonsson, T., Jakobsdottir, M., Saemundsdottir, J., Olafsdottir, O., Gudmundsson, L. J., Bjornsdottir, G., Kristjansson, K., Skuladottir, H., Isaksson, H. J., Gudbjartsson, T., Jones, G. T., Mueller, T., Gottsäter, A., Flex, A., Aben, K. K. H., de Vegt, F., Mulders, P. F. A., Isla, D., Vidal, M. J., Asin, L., Saez, B., Murillo, L., Blondal, T., Kolbeinsson, H., Stefansson, J. G., Hansdottir, I., Runarsdottir, V., Pola, R., Lindblad, B., van Rij, A. M., Dieplinger, B., Haltmayer, M., Mayordomo, J. I., Kiemeney, L. A., Matthiasson, S. E., Oskarsson, H., Tyrfingsson, T., Gudbjartsson, D. F., Gulcher, J. R., Jonsson, S., Thorsteinsdottir, U., Kong, A., & Stefansson, K. (2008). A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature, 452(7187), 638–642. https://doi.org/10.1038/nature06846.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jeck, W. R., & Sharpless, N. E. (2014). Detecting and characterizing circular RNAs. Nature Biotechnology, 32(5), 453–461. https://doi.org/10.1038/nbt.2890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sanger, H. L., Klotz, G., Riesner, D., Gross, H. J., & Kleinschmidt, A. K. (1976). Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A, 73(11), 3852–3856. https://doi.org/10.1073/pnas.73.11.3852.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S. D., Gregersen, L. H., Munschauer, M., Loewer, A., Ziebold, U., Landthaler, M., Kocks, C., le Noble, F., & Rajewsky, N. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495(7441), 333–338. https://doi.org/10.1038/nature11928.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Chen, J., Li, Y., Zheng, Q., Bao, C., He, J., Chen, B., Lyu, D., Zheng, B., Xu, Y., Long, Z., Zhou, Y., Zhu, H., Wang, Y., He, X., Shi, Y., & Huang, S. (2017). Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Letters, 388, 208–219. https://doi.org/10.1016/j.canlet.2016.12.006.

    Article  CAS  PubMed  Google Scholar 

  12. Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K., & Kjems, J. (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495(7441), 384–388. https://doi.org/10.1038/nature11993.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Zhang, X. O., Wang, H. B., Zhang, Y., Lu, X., Chen, L. L., & Yang, L. (2014). Complementary sequence-mediated exon circularization. Cell, 159(1), 134–147. https://doi.org/10.1016/j.cell.2014.09.001.

    Article  CAS  PubMed  Google Scholar 

  14. Yang, F., Liu, D. Y., Guo, J. T., Ge, N., Zhu, P., Liu, X., Wang, S., Wang, G. X., & Sun, S. Y. (2017). Circular RNA circ-LDLRAD3 as a biomarker in diagnosis of pancreatic cancer. World Journal of Gastroenterology, 23(47), 8345–8354. https://doi.org/10.3748/wjg.v23.i47.8345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Glažar, P., Papavasileiou, P., & Rajewsky, N. (2014). circBase: A database for circular RNAs. Rna, 20(11), 1666–1670. https://doi.org/10.1261/rna.043687.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vishnoi, A., & Rani, S. (2017). MiRNA Biogenesis and Regulation of diseases: An overview. Methods in Molecular Biology, 1509, 1–10. https://doi.org/10.1007/978-1-4939-6524-3_1.

    Article  CAS  PubMed  Google Scholar 

  17. Tutar, Y. (2014). miRNA and cancer; computational and experimental approaches. Current Pharmaceutical Biotechnology, 15(5), 429. https://doi.org/10.2174/138920101505140828161335.

    Article  CAS  PubMed  Google Scholar 

  18. Li, Y., Tian, Z., Tan, Y., Lian, G., Chen, S., Chen, S., Li, J., Li, X., Huang, K., & Chen, Y. (2020). Bmi-1-induced miR-27a and miR-155 promote tumor metastasis and chemoresistance by targeting RKIP in gastric cancer. Molecular Cancer, 19(1), 109. https://doi.org/10.1186/s12943-020-01229-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, Y., Min, L., Ren, C., Xu, X., Yang, J., Sun, X., Wang, T., Wang, F., Sun, C., & Zhang, X. (2017). miRNA-148a serves as a prognostic factor and suppresses migration and invasion through Wnt1 in non-small cell lung cancer. PLoS One, 12(2), e0171751. https://doi.org/10.1371/journal.pone.0171751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, G., Wang, K., Wang, J., Qin, S., Sun, X., & Ren, H. (2019). Mir-497-5p inhibits tumor cell growth and invasion by targeting SOX5 in non-small-cell lung cancer. Journal of Cellular Biochemistry, 120(6), 10587–10595. https://doi.org/10.1002/jcb.28345.

    Article  CAS  PubMed  Google Scholar 

  21. Ganapathy-Kanniappan, S. (2020). PFKP phenotype in lung cancer: Prognostic potential and beyond. Molecular Biology Reports, 47(10), 8271–8272. https://doi.org/10.1007/s11033-020-05805-9.

    Article  CAS  PubMed  Google Scholar 

  22. Shen, J., Jin, Z., Lv, H., Jin, K., Jonas, K., Zhu, C., & Chen, B. (2020). PFKP is highly expressed in lung cancer and regulates glucose metabolism. Cell Oncol (Dordr), 43(4), 617–629. https://doi.org/10.1007/s13402-020-00508-6.

    Article  CAS  PubMed  Google Scholar 

  23. Chen, J., Zou, L., Lu, G., Grinchuk, O., Fang, L., Ong, D. S. T., Taneja, R., Ong, C. N., & Shen, H. M. (2022). PFKP alleviates glucose starvation-induced metabolic stress in lung cancer cells via AMPK-ACC2 dependent fatty acid oxidation. Cell Discov, 8(1), 52. https://doi.org/10.1038/s41421-022-00406-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, Y., Yin, H., & Chen, X. (2021). Circ-LDLRAD3 enhances cell growth, Migration, and Invasion and inhibits apoptosis by regulating MiR-224-5p/NRP2 Axis in Gastric Cancer. Digestive Diseases and Sciences. https://doi.org/10.1007/s10620-020-06733-1.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bade, B. C., & Dela Cruz, C. S. (2020). Lung Cancer 2020: Epidemiology, etiology, and Prevention. Clinics in Chest Medicine, 41(1), 1–24. https://doi.org/10.1016/j.ccm.2019.10.001.

    Article  PubMed  Google Scholar 

  26. Xue, M., Hong, W., Jiang, J., Zhao, F., & Gao, X. (2020). Circular RNA circ-LDLRAD3 serves as an oncogene to promote non-small cell lung cancer progression by upregulating SLC1A5 through sponging miR-137. Rna Biology, 17(12), 1811–1822. https://doi.org/10.1080/15476286.2020.1789819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Feng, L., Cheng, K., Zang, R., Wang, Q., & Wang, J. (2019). miR-497-5p inhibits gastric cancer cell proliferation and growth through targeting PDK3. Bioscience Reports, 39(9), BSR20190654. https://doi.org/10.1042/bsr20190654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fridrichova, I., Kalinkova, L., Karhanek, M., Smolkova, B., Machalekova, K., Wachsmannova, L., Nikolaieva, N., & Kajo, K. (2020). miR-497-5p decreased expression associated with high-risk endometrial cancer. International Journal Of Molecular Sciences, 22(1), 127. https://doi.org/10.3390/ijms22010127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wei, J., Wang, L., Sun, Y., & Bao, Y. (2020). LINC00662 contributes to the progression and the radioresistance of cervical cancer by regulating mir-497-5p and CDC25A. Cell Biochemistry and Function, 38(8), 1139–1151. https://doi.org/10.1002/cbf.3580.

    Article  CAS  PubMed  Google Scholar 

  30. Gharib, E., Nasri Nasrabadi, P., & Reza Zali, M. (2020). Mir-497-5p mediates starvation-induced death in colon cancer cells by targeting acyl-CoA synthetase-5 and modulation of lipid metabolism. Journal of Cellular Physiology, 235(7–8), 5570–5589. https://doi.org/10.1002/jcp.29488.

    Article  CAS  PubMed  Google Scholar 

  31. Huang, X., Wang, L., Liu, W., & Li, F. (2019). MicroRNA-497-5p inhibits proliferation and invasion of non-small cell lung cancer by regulating FGF2. Oncol Lett, 17(3), 3425–3431. https://doi.org/10.3892/ol.2019.9954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, Y., Sun, W., Pan, H., Yuan, J., Xu, Q., Xu, T., Li, P., Cheng, D., Liu, Y., & Ni, C. (2021). LncRNA-PVT1 activates lung fibroblasts via mir-497-5p and is facilitated by FOXM1. Ecotoxicology and Environmental Safety, 213, 112030. https://doi.org/10.1016/j.ecoenv.2021.112030.

    Article  CAS  PubMed  Google Scholar 

  33. Peng, M., Yang, D., Hou, Y., Liu, S., Zhao, M., Qin, Y., Chen, R., Teng, Y., & Liu, M. (2019). Intracellular citrate accumulation by oxidized ATM-mediated metabolism reprogramming via PFKP and CS enhances hypoxic breast cancer cell invasion and metastasis. Cell Death and Disease, 10(3), 228. https://doi.org/10.1038/s41419-019-1475-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qing, Y., Dong, L., Gao, L., Li, C., Li, Y., Han, L., Prince, E., Tan, B., Deng, X., Wetzel, C., Shen, C., Gao, M., Chen, Z., Li, W., Zhang, B., Braas, D., Ten Hoeve, J., Sanchez, G. J., Chen, H., Chan, L. N., Chen, C. W., Ann, D., Jiang, L., Müschen, M., Marcucci, G., Plas, D. R., Li, Z., Su, R., & Chen, J. (2021). R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m(6)A/PFKP/LDHB axis. Molecular Cell, 81(5), 922–939e929. https://doi.org/10.1016/j.molcel.2020.12.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Wu, R. & Li, H. Silencing circLDLRAD3 Inhibits Lung Cancer Progression by Regulating the miR-497-5p/PFKP Axis. Mol Biotechnol (2024). https://doi.org/10.1007/s12033-024-01047-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-024-01047-3

Keywords

Navigation