Skip to main content
Log in

Autophagic Regulation of Adipogenesis Through TP53INP2: Insights from In Silico and In Vitro Analysis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Obesity is an epidemic disease associated with multimorbidity resulting in higher mortality risk. The imbalance between energy storage and expenditure is the prime factor in the prognosis of the disease. Specifically, excessive lipid storage through adipogenesis leads to obesity. Adipogenesis is the process that converts preadipocytes into mature adipocytes by regulating major transcription factors like PPARγ and C/EBPα, contributes to lipid storage in adipose tissue. On the contrary, autophagy is a self-degradative process that maintains homeostasis in adipose tissue by regulating adipogenesis and lipolysis. TP53INP2 is a key player that regulates the autophagy process, and it negatively regulates adipogenesis and lipid storage. The gene expression profile GSE93637 was retrieved from the GEO database and analyzed using an integrated bioinformatics approach. The differentially expressed genes (DEGs) were analyzed using R-Bioconductor for TP53INP2 knockdown microarray dataset of 3T3L1 cells, and the DEGs were analyzed for the functional enrichment analysis. Further, the genes involved in the potential biological and molecular functions were evaluated for pathway enrichment analysis by KEGG (Kyoto Encyclopedia of Genes and Genomes). A total of 726 DEGs were found including 391 upregulated and 335 downregulated genes. Further, the functional and pathway enrichment analysis was employed to identify the highly interacting genes, and we identified a total of 56 genes that are highly interacting through a protein–protein interaction network. The DEGs mainly regulate the Peroxisome proliferator-activated receptor (PPAR) signaling pathway, lipolysis, and autophagy. Further, we investigated the associated Hub genes for enriched pathway genes and found the involvement of two autophagic genes ATG7 and sequestosome 1 (p62). In addition, in vitro studies of qRT-PCR (Quantitative real-time polymerase chain reaction) and Western blot analysis revealed that increased autophagy resulted in reduced lipid storage through down-regulation of the adipogenic gene. Moreover, increased expression of autophagic gene TP53INP2 and ATG7 facilitates the down-regulation of p62 and PPARγ gene resulting in lipolysis in mature adipocytes through autophagy. There is no specific treatment to reduce obesity other than a caloric diet and exercise. Hence, this study provides sufficient evidence to conclude that TP53INP2 negatively regulates adipogenesis and increases the degradation of lipids in mature adipocytes which is crucial for reducing obesity. Therefore, it is plausible to consider TP53INP2 as a promising therapeutic target for managing adipogenesis and obesity. However, further studies are necessary to validate their functional and molecular pathway analysis in the regulation of adipogenesis and obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The GEO (Gene Expression Omnibus) database from NCBI was used to access the GSE93637 dataset (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93637).

References

  1. Gao, M., & Liu, D. (2019). Controlling obesity and metabolic diseases by hydrodynamic delivery of a fusion gene of exendin-4 and α1 antitrypsin. Scientific Reports. https://doi.org/10.1038/s41598-019-49757-y

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chait, A., & den Hartigh, L. J. (2020). Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Frontiers in Cardiovascular Medicine. https://doi.org/10.3389/fcvm.2020.00022

    Article  PubMed  PubMed Central  Google Scholar 

  3. Blüher, M. (2009). Adipose tissue dysfunction in obesity. Experimental and Clinical Endocrinology and Diabetes. https://doi.org/10.1055/s-0029-1192044

    Article  PubMed  Google Scholar 

  4. Lee, M. J. (2017). Hormonal regulation of adipogenesis. Comprehensive Physiology, 7(4), 1151–1195. https://doi.org/10.1002/cphy.c160047

    Article  PubMed  Google Scholar 

  5. Sekar, M., & Thirumurugan, K. (2022). Autophagy: A molecular switch to regulate adipogenesis and lipolysis. Molecular and Cellular Biochemistry. https://doi.org/10.1007/s11010-021-04324-w

    Article  PubMed  Google Scholar 

  6. Tung, Y. C., Hsieh, P. H., Pan, M. H., & Ho, C. T. (2017). Cellular models for the evaluation of the antiobesity effect of selected phytochemicals from food and herbs. Journal of Food and Drug Analysis. https://doi.org/10.1016/j.jfda.2016.10.018

    Article  PubMed  Google Scholar 

  7. Khan, F., Khan, H., Khan, A., Yamasaki, M., Moustaid-Moussa, N., Al-Harrasi, A., & Rahman, S. M. (2022). Autophagy in adipogenesis: Molecular mechanisms and regulation by bioactive compounds. Biomedicine and Pharmacotherapy. https://doi.org/10.1016/j.biopha.2022.113715

    Article  PubMed  Google Scholar 

  8. Parzych, K. R., & Klionsky, D. J. (2014). An overview of autophagy: Morphology, mechanism, and regulation. Antioxidants and Redox Signaling, 20(3), 460–473. https://doi.org/10.1089/ars.2013.5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, S., Peng, X., Yang, S., Li, X., Huang, M., Wei, S., Liu, J., He, G., Zheng, H., Yang, L., Li, H., & Fan, Q. (2022). The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders. Cell Death and Disease. https://doi.org/10.1038/s41419-022-04593-3

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huang, R., & Liu, W. (2015). Identifying an essential role of nuclear LC3 for autophagy. Autophagy. https://doi.org/10.1080/15548627.2015.1038016

    Article  PubMed  PubMed Central  Google Scholar 

  11. Baumgartner, B. G., Orpinell, M., Duran, J., Ribas, V., Burghardt, H. E., Bach, D., Villar, A. V., Paz, J. C., González, M., Camps, M., Oriola, J., Rivera, F., Palacín, M., & Zorzano, A. (2007). Identification of a novel modulator of thyroid hormone receptor-mediated action. PLoS ONE. https://doi.org/10.1371/journal.pone.0001183

    Article  PubMed  PubMed Central  Google Scholar 

  12. Romero, M., & Zorzano, A. (2019). Role of autophagy in the regulation of adipose tissue biology. Cell Cycle, 18(13), 1435–1445. https://doi.org/10.1080/15384101.2019.1624110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sala, D., Ivanova, S., Plana, N., Ribas, V., Duran, J., Bach, D., Turkseven, S., Laville, M., Vidal, H., Karczewska-Kupczewska, M., Kowalska, I., Straczkowski, M., Testar, X., Palacín, M., Sandri, M., Serrano, A. L., & Zorzano, A. (2014). Autophagy-regulating TP53INP2 mediates muscle wasting and is repressed in diabetes. Journal of Clinical Investigation. https://doi.org/10.1172/JCI72327

    Article  PubMed  PubMed Central  Google Scholar 

  14. Soussi, H., Clément, K., & Dugail, I. (2016). Adipose tissue autophagy status in obesity: Expression and flux—two faces of the picture. Autophagy, 12(3), 588–589. https://doi.org/10.1080/15548627.2015.1106667

    Article  CAS  PubMed  Google Scholar 

  15. Ju, L., Han, J., Zhang, X., Deng, Y., Yan, H., Wang, C., Li, X., Chen, S., Alimujiang, M., Li, X., Fang, Q., Yang, Y., & Jia, W. (2019). Obesity-associated inflammation triggers an autophagy–lysosomal response in adipocytes and causes degradation of perilipin 1. Cell Death and Disease. https://doi.org/10.1038/s41419-019-1393-8

    Article  PubMed  PubMed Central  Google Scholar 

  16. Maixner, N., Bechor, S., Vershinin, Z., Pecht, T., Goldstein, N., Haim, Y., & Rudich, A. (2016). Transcriptional dysregulation of adipose tissue autophagy in obesity. Physiology, 31(4), 270–282. https://doi.org/10.1152/physiol.00048.2015

    Article  CAS  PubMed  Google Scholar 

  17. Romero, M., Sabaté-Pérez, A., Francis, V. A., Castrillón-Rodriguez, I., Díaz-Ramos, Á., Sánchez-Feutrie, M., Durán, X., Palacín, M., Moreno-Navarrete, J. M., Gustafson, B., Hammarstedt, A., Fernández-Real, J. M., Vendrell, J., Smith, U., & Zorzano, A. (2018). TP53INP2 regulates adiposity by activating β-catenin through autophagy-dependent sequestration of GSK3β. Nature Cell Biology. https://doi.org/10.1038/s41556-018-0072-9

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xu, Y., & Wan, W. (2019). TP53INP2 mediates autophagic degradation of ubiquitinated proteins through its ubiquitin-interacting motif. FEBS Letters. https://doi.org/10.1002/1873-3468.13467

    Article  PubMed  PubMed Central  Google Scholar 

  19. Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K. A., Phillippy, K. H., Sherman, P. M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C. L., Serova, N., Davis, S., & Soboleva, A. (2013). NCBI GEO: Archive for functional genomics data sets—Update. Nucleic Acids Research. https://doi.org/10.1093/nar/gks1193

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hori, H., Sasayama, D., Teraishi, T., Yamamoto, N., Nakamura, S., Ota, M., Hattori, K., Kim, Y., Higuchi, T., & Kunugi, H. (2016). Blood-based gene expression signatures of medication-free outpatients with major depressive disorder: Integrative genome-wide and candidate gene analyses. Scientific Reports. https://doi.org/10.1038/srep18776

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research. https://doi.org/10.1093/nar/gkv007

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li, X., Cooper, N. G. F., O’Toole, T. E., & Rouchka, E. C. (2020). Choice of library size normalization and statistical methods for differential gene expression analysis in balanced two-group comparisons for RNA-seq studies. BMC Genomics. https://doi.org/10.1186/s12864-020-6502-7

    Article  PubMed  PubMed Central  Google Scholar 

  23. Heberle, H., Meirelles, V. G., da Silva, F. R., Telles, G. P., & Minghim, R. (2015). InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. https://doi.org/10.1186/s12859-015-0611-3

    Article  PubMed  PubMed Central  Google Scholar 

  24. Alom, M. M., Faruqe, M. O., Molla, M. K. I., & Rahman, M. M. (2023). Exploring prognostic biomarkers of acute myeloid leukemia to determine its most effective drugs from the FDA—Approved list through molecular docking and dynamic simulation. BioMed Research International, 2023, 1–26. https://doi.org/10.1155/2023/1946703

    Article  CAS  Google Scholar 

  25. Thomas, P. D., Ebert, D., Muruganujan, A., Mushayahama, T., Albou, L. P., & Mi, H. (2022). PANTHER: Making genome-scale phylogenetics accessible to all. Protein Science. https://doi.org/10.1002/pro.4218

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W., Lane, H. C., Imamichi, T., & Chang, W. (2022). DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Research. https://doi.org/10.1093/nar/gkac194

    Article  PubMed  PubMed Central  Google Scholar 

  27. Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J., & von Mering, C. (2021). The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research. https://doi.org/10.1093/nar/gkaa1074

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M. T., & Lin, C. Y. (2014). cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology. https://doi.org/10.1186/1752-0509-8-S4-S11

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kumar, V., Sekar, M., Sarkar, P., Acharya, K. K., & Thirumurugan, K. (2021). Dynamics of HOX gene expression and regulation in adipocyte development. Gene. https://doi.org/10.1016/j.gene.2020.145308

    Article  PubMed  PubMed Central  Google Scholar 

  30. Reed, B. C., & Lane, M. D. (1980). Insulin receptor synthesis and turnover in differentiating 3T3-L1 preadipocytes. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.77.1.285

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhu, W., Qu, H., Xu, K., Jia, B., Li, H., Du, Y., Liu, G., Wei, H.-J., & Zhao, H.-Y. (2017). Differences in the starvation-induced autophagy response in MDA-MB-231 and MCF-7 breast cancer cells. Animal Cells and Systems, 21(3), 190–198. https://doi.org/10.1080/19768354.2017.1330763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kraus, N. A., Ehebauer, F., Zapp, B., Rudolphi, B., Kraus, B. J., & Kraus, D. (2016). Quantitative assessment of adipocyte differentiation in cell culture. Adipocyte. https://doi.org/10.1080/21623945.2016.1240137

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shihabudeen, M. S., Roy, D., James, J., & Thirumurugan, K. (2015). Chenodeoxycholic acid, an endogenous FXR ligand alters adipokines and reverses insulin resistance. Molecular and Cellular Endocrinology. https://doi.org/10.1016/j.mce.2015.07.012

    Article  PubMed  Google Scholar 

  34. Gustafson, B., Gogg, S., Hedjazifar, S., Jenndahl, L., Hammarstedt, A., & Smith, U. (2009). Inflammation and impaired adipogenesis in hypertrophic obesity in man. American Journal of Physiology—Endocrinology and Metabolism. https://doi.org/10.1152/ajpendo.00377.2009

    Article  PubMed  Google Scholar 

  35. Lefterova, M. I., & Lazar, M. A. (2009). New developments in adipogenesis. Trends in Endocrinology and Metabolism, 20(3), 107–114. https://doi.org/10.1016/j.tem.2008.11.005

    Article  CAS  PubMed  Google Scholar 

  36. Madsen, M. S., Siersbæk, R., Boergesen, M., Nielsen, R., & Mandrup, S. (2014). Peroxisome proliferator-activated receptor γ and C/EBPα synergistically activate key metabolic adipocyte genes by assisted loading. Molecular and Cellular Biology. https://doi.org/10.1128/mcb.01344-13

    Article  PubMed  PubMed Central  Google Scholar 

  37. Anvari, G., & Bellas, E. (2021). Hypoxia induces stress fiber formation in adipocytes in the early stage of obesity. Scientific Reports. https://doi.org/10.1038/s41598-021-00335-1

    Article  PubMed  PubMed Central  Google Scholar 

  38. You, Z., Xu, Y., Wan, W., Zhou, L., Li, J., Zhou, T., Shi, Y., & Liu, W. (2019). TP53INP2 contributes to autophagosome formation by promoting LC3-ATG7 interaction. Autophagy, 15(8), 1309–1321. https://doi.org/10.1080/15548627.2019.1580510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Baerga, R., Zhang, Y., Chen, P. H., Goldman, S., & Jin, S. (2009). Targeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in mice. Autophagy. https://doi.org/10.4161/auto.5.8.9991

    Article  PubMed  Google Scholar 

  40. Igawa, H., Kikuchi, A., Misu, H., Ishii, K. A., Kaneko, S., & Takamura, T. (2019). p62-mediated autophagy affects nutrition-dependent insulin receptor substrate 1 dynamics in 3T3-L1 preadipocytes. Journal of Diabetes Investigation. https://doi.org/10.1111/jdi.12866

    Article  PubMed  Google Scholar 

  41. Zhang, Y., Goldman, S., Baerga, R., Zhao, Y., Komatsu, M., & Jin, S. (2009). Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.0906048106

    Article  PubMed  PubMed Central  Google Scholar 

  42. Garcia, E. J., Vevea, J. D., & Pon, L. A. (2018). Lipid droplet autophagy during energy mobilization, lipid homeostasis and protein quality control. Frontiers in Bioscience—Landmark. https://doi.org/10.2741/4660

    Article  Google Scholar 

  43. Stienstra, R., Duval, C., Müller, M., & Kersten, S. (2007). PPARs, obesity, and inflammation. PPAR Research. https://doi.org/10.1155/2007/95974

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lefterova, M. I., Haakonsson, A. K., Lazar, M. A., & Mandrup, S. (2014). PPARγ and the global map of adipogenesis and beyond. Trends in Endocrinology and Metabolism. https://doi.org/10.1016/j.tem.2014.04.001

    Article  PubMed  Google Scholar 

  45. Grabner, G. F., Xie, H., Schweiger, M., & Zechner, R. (2021). Lipolysis: Cellular mechanisms for lipid mobilization from fat stores. Nature Metabolism. https://doi.org/10.1038/s42255-021-00493-6

    Article  PubMed  Google Scholar 

  46. Ahmad, B., Serpell, C. J., Fong, I. L., & Wong, E. H. (2020). Molecular mechanisms of adipogenesis: the anti-adipogenic role of AMP-activated protein kinase. Frontiers in Molecular Biosciences. https://doi.org/10.3389/fmolb.2020.00076

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang, X., Liu, Q., Zhang, X., Guo, K., Zhang, X., & Zhou, Z. (2021). FOXO3a regulates lipid accumulation and adipocyte inflammation in adipocytes through autophagy: Role of FOXO3a in obesity. Inflammation Research. https://doi.org/10.1007/s00011-021-01463-0

    Article  PubMed  PubMed Central  Google Scholar 

  48. Savova, M. S., Mihaylova, L. V., Tews, D., Wabitsch, M., & Georgiev, M. I. (2023). Targeting PI3K/AKT signaling pathway in obesity. Biomedicine and Pharmacotherapy. https://doi.org/10.1016/j.biopha.2023.114244

    Article  PubMed  Google Scholar 

  49. Zhang, F., Ma, H., Wang, Z. L., Li, W. H., Liu, H., & Zhao, Y. X. (2020). The PI3K/AKT/mTOR pathway regulates autophagy to induce apoptosis of alveolar epithelial cells in chronic obstructive pulmonary disease caused by PM2.5 particulate matter. Journal of International Medical Research. https://doi.org/10.1177/0300060520927919

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang, Y., Goldman, S., Baerga, R., Zhao, Y., Komatsu, M., & Jin, S. (2009). Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 106(47), 19860–19865. https://doi.org/10.1073/pnas.0906048106

    Article  PubMed  PubMed Central  Google Scholar 

  51. Shang, L., Chen, S., Du, F., Li, S., Zhao, L., & Wang, X. (2011). Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.1100844108

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rambold, A. S., Cohen, S., & Lippincott-Schwartz, J. (2015). Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Developmental Cell. https://doi.org/10.1016/j.devcel.2015.01.029

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang, Y., Gao, J., Fan, B., Hu, Y., Yang, Y., Wu, Y., Li, F., & Ju, H. (2023). Regulation of metabolism and differentiation in porcine skeletal muscle satellite cells by different levels of autophagy induced through transient serum starvation. Scientific Reports, 13(1), 1–13. https://doi.org/10.1038/s41598-023-40350-y

    Article  CAS  Google Scholar 

  54. Huang, R., Xu, Y., Wan, W., Shou, X., Qian, J., You, Z., Liu, B., Chang, C., Zhou, T., Lippincott-Schwartz, J., & Liu, W. (2015). Initiation of autophagy under starvation through deacetylation of nuclear LC3. Molecular Cell. https://doi.org/10.1016/j.molcel.2014.12.013

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ahmadian, M., Suh, J. M., Hah, N., Liddle, C., Atkins, A. R., Downes, M., & Evans, R. M. (2013). Pparγ signaling and metabolism: The good, the bad and the future. Nature Medicine. https://doi.org/10.1038/nm.3159

    Article  PubMed  PubMed Central  Google Scholar 

  56. Romero, M., & Zorzano, A. (2019). Role of autophagy in the regulation of adipose tissue biology. Cell Cycle. https://doi.org/10.1080/15384101.2019.1624110

    Article  PubMed  PubMed Central  Google Scholar 

  57. Martinez-Lopez, N., & Singh, R. (2015). Autophagy and Lipid Droplets in the Liver. Annual Review of Nutrition. https://doi.org/10.1146/annurev-nutr-071813-105336

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our acknowledgment to the ICMR and Administration of VIT for their provision of the essential resources and support that enabled the successful execution of this study.

Funding

This work was financially supported by the Indian Council of Medical Research (ICMR) Senior Research fellowship [File. No: No. 3/1/2(20)/OBS/2022-NCD-II] and the Vellore Institute of Technology (VIT).

Author information

Authors and Affiliations

Authors

Contributions

MS and KT design the study. MS did the collection, analysis, and interpretation of the data. MS and KT drafted the manuscript. KT supervised the entire study.

Corresponding author

Correspondence to Kavitha Thirumurugan.

Ethics declarations

Competing interest

The authors of this manuscript have no conflict of interest.

Ethical Approval

This work does not include any human or animal studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Supplementary file1 (XLSX 166 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekar, M., Thirumurugan, K. Autophagic Regulation of Adipogenesis Through TP53INP2: Insights from In Silico and In Vitro Analysis. Mol Biotechnol 66, 1188–1205 (2024). https://doi.org/10.1007/s12033-023-01020-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-01020-6

Keywords

Navigation