Skip to main content

Advertisement

Log in

Unlocking the Potential of Obestatin: A Novel Peptide Intervention for Skeletal Muscle Regeneration and Prevention of Atrophy

  • Review Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Obestatin is derived from the same gene as that of ghrelin and their functions were perceived to be antagonistic. Recent developments have shown that although they are known to have contradictory functions, effect of obestatin on skeletal muscle regeneration is similar to that of ghrelin. Obestatin works through a receptor called GPR39, a ghrelin and motilin family receptor and transduces signals in skeletal muscle similar to that of ghrelin. Not only there is a similarity in the receptor family, but also obestatin targets similar proteins and transcription factors as that of ghrelin (for example, FoxO family members) for salvaging skeletal muscle atrophy. Moreover, like ghrelin, obestatin also works by inducing the transcription of Pax7 which is required for muscle stem cell mobilisation. Hence, there are quite some evidences which points to the fact that obestatin can be purposed as a peptide intervention to prevent skeletal muscle wasting and induce myogenesis. This review elaborates these aspects of obestatin which can be further exploited and addressed to bring obestatin as a clinical intervention towards preventing skeletal muscle atrophy and sarcopenia.

Graphical Abstract

Summary of action of obestatin in skeletal muscle atrophy. (Icon image source: www.flaticon.com; Obestatin structure: PDB id 2JSH)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

This is a review article. All the data used in the study have been accumulated from the cited references in the article.

Abbreviations

GPR39:

G protein-coupled receptor 39

Akt:

Protein Kinase B

PI3K:

Phosphoinositide 3-kinase

mTOR:

Mammalian Target of Rapamycin

MAPK:

Mitogen-Activated Protein Kinase

GHSR:

Growth Hormone Secretagogue Receptor

GH:

Growth Hormone

STZ:

Streptozotocin

PGC-1α:

Peroxisome proliferator-activated receptor-gamma coactivator-1α

IGF1:

Insulin-like Growth Factor

FoxO:

Forkhead family of transcription factors

CaMK II:

Calcium-calmodulin-dependent protein kinase II

KLF15:

Krüppel-like Factor 15

AMPK:

AMP-activated Protein Kinase

LC3:

Light Chain 3

AG:

Acylated Ghrelin

UAG:

Unacylated Ghrelin

Ub:

Ubiquitin

4E-BP1:

4E-binding protein 1

References

  1. Nagendra, A. H., Najar, M. A., Bose, B., & Shenoy, P. S. (2022). High concentration of sodium fluoride in drinking water induce hypertrophy versus atrophy in mouse skeletal muscle via modulation of sarcomeric proteins. Journal of Hazardous Materials, 432, 128654. https://doi.org/10.1016/j.jhazmat.2022.128654

    Article  CAS  PubMed  Google Scholar 

  2. Nagendra, A. H., Ray, A., Chaudhury, D., Mitra, A., Ranade, A. V., Bose, B., & Shenoy, P. S. (2022). Sodium fluoride induces skeletal muscle atrophy via changes in mitochondrial and sarcomeric proteomes. PLoS ONE, 17(12), e0279261. https://doi.org/10.1371/journal.pone.0279261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Szondy, Z., Al-Zaeed, N., Tarban, N., Fige, E., Garabuczi, E., & Sarang, Z. (2022). Involvement of phosphatidylserine receptors in the skeletal muscle regeneration: Therapeutic implications. Journal of Cachexia, Sarcopenia and Muscle, 13(4), 1961–1973. https://doi.org/10.1002/jcsm.13024

    Article  PubMed  PubMed Central  Google Scholar 

  4. Merz, K. E., & Thurmond, D. C. (2020). Role of skeletal muscle in insulin resistance and glucose uptake. Comprehensive Physiology, 10(3), 785–809. https://doi.org/10.1002/cphy.c190029

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kang, S. H., Lee, H. A., Kim, M., Lee, E., Sohn, U. D., & Kim, I. (2017). Forkhead box O3 plays a role in skeletal muscle atrophy through expression of E3 ubiquitin ligases MuRF-1 and atrogin-1 in Cushing’s syndrome. American journal of physiology. Endocrinology and metabolism, 312(6), E495–E507. https://doi.org/10.1152/ajpendo.00389.2016

    Article  PubMed  Google Scholar 

  6. Chen, X., Chen, W., Wang, D., Ma, L., Tao, J., & Zhang, A. (2023). Subchronic arsenite exposure induced atrophy and erythropoietin sensitivity reduction in skeletal muscle were relevant to declined serum melatonin levels in middle-aged rats. Toxics. https://doi.org/10.3390/toxics11080689

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu, X., Zhang, Y., Sun, X., Zhang, W., Shi, X., & Xu, S. (2022). Di-(2-ethyl hexyl) phthalate induced oxidative stress promotes microplastics mediated apoptosis and necroptosis in mice skeletal muscle by inhibiting PI3K/AKT/mTOR pathway. Toxicology, 474, 153226. https://doi.org/10.1016/j.tox.2022.153226

    Article  CAS  PubMed  Google Scholar 

  8. Schiaffino, S., Reggiani, C., Akimoto, T., & Blaauw, B. (2021). Molecular mechanisms of skeletal muscle hypertrophy. Journal of Neuromuscular Diseases, 8(2), 169–183. https://doi.org/10.3233/JND-200568

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang, T., Xu, H., Wu, S., Guo, Y., Zhao, G., & Wang, D. (2023). Mechanisms underlying the effects of the green tea polyphenol EGCG in sarcopenia prevention and management. Journal of Agriculture and Food Chemistry, 71(25), 9609–9627. https://doi.org/10.1021/acs.jafc.3c02023

    Article  CAS  Google Scholar 

  10. Cabezas Perez, R. J., Avila Rodriguez, M. F., & Rosero Salazar, D. H. (2022). Exogenous antioxidants in remyelination and skeletal muscle recovery. Biomedicines. https://doi.org/10.3390/biomedicines10102557

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gortan Cappellari, G., Aleksova, A., Dal Ferro, M., Cannata, A., Semolic, A., Guarnaccia, A., Zanetti, M., Giacca, M., Sinagra, G., & Barazzoni, R. (2023). n-3 PUFA-enriched diet preserves skeletal muscle mitochondrial function and redox state and prevents muscle mass loss in mice with chronic heart failure. Nutrients. https://doi.org/10.3390/nu15143108

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mitra, A., Shanavas, S., Chaudhury, D., Bose, B., Das, U. N., & Shenoy, P. S. (2023). Mitigation of chronic glucotoxicity-mediated skeletal muscle atrophy by arachidonic acid. Life Sciences, 333, 122141. https://doi.org/10.1016/j.lfs.2023.122141

    Article  CAS  PubMed  Google Scholar 

  13. Porporato, P. E., Filigheddu, N., Reano, S., Ferrara, M., Angelino, E., Gnocchi, V. F., Prodam, F., Ronchi, G., Fagoonee, S., Fornaro, M., Chianale, F., Baldanzi, G., Surico, N., Sinigaglia, F., Perroteau, I., Smith, R. G., Sun, Y., Geuna, S., & Graziani, A. (2013). Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice. The Journal of Clinical Investigation, 123(2), 611–622. https://doi.org/10.1172/JCI39920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lund, L. H., Hage, C., Pironti, G., Thorvaldsen, T., Ljung-Faxen, U., Zabarovskaja, S., Shahgaldi, K., Webb, D. L., Hellstrom, P. M., Andersson, D. C., & Stahlberg, M. (2023). Acyl ghrelin improves cardiac function in heart failure and increases fractional shortening in cardiomyocytes without calcium mobilization. European Heart Journal, 44(22), 2009–2025. https://doi.org/10.1093/eurheartj/ehad100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bora, R. R., Prasad, R., & Khatib, M. N. (2023). Cardio-protective role of a gut hormone obestatin: A narrative review. Cureus. https://doi.org/10.7759/cureus.37972

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang, J. V., Ren, P. G., Avsian-Kretchmer, O., Luo, C. W., Rauch, R., Klein, C., & Hsueh, A. J. (2005). Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science, 310(5750), 996–999. https://doi.org/10.1126/science.1117255

    Article  CAS  PubMed  Google Scholar 

  17. Gronberg, M., Tsolakis, A. V., Magnusson, L., Janson, E. T., & Saras, J. (2008). Distribution of obestatin and ghrelin in human tissues: Immunoreactive cells in the gastrointestinal tract, pancreas, and mammary glands. Journal of Histochemistry and Cytochemistry, 56(9), 793–801. https://doi.org/10.1369/jhc.2008.951145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alvarez, C. J., Lodeiro, M., Theodoropoulou, M., Camina, J. P., Casanueva, F. F., & Pazos, Y. (2009). Obestatin stimulates Akt signalling in gastric cancer cells through beta-arrestin-mediated epidermal growth factor receptor transactivation. Endocrine-Related Cancer, 16(2), 599–611. https://doi.org/10.1677/ERC-08-0192

    Article  CAS  PubMed  Google Scholar 

  19. Lv, Y., Liang, T., Wang, G., & Li, Z. (2018). Ghrelin, a gastrointestinal hormone, regulates energy balance and lipid metabolism. Bioscience Reports. https://doi.org/10.1042/BSR20181061

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ibrahim Abdalla, M. M. (2015). Ghrelin—physiological functions and regulation. European endocrinology, 11(2), 90–95. https://doi.org/10.17925/EE.2015.11.02.90

    Article  PubMed  PubMed Central  Google Scholar 

  21. Filigheddu, N., Gnocchi, V. F., Coscia, M., Cappelli, M., Porporato, P. E., Taulli, R., Traini, S., Baldanzi, G., Chianale, F., Cutrupi, S., Arnoletti, E., Ghe, C., Fubini, A., Surico, N., Sinigaglia, F., Ponzetto, C., Muccioli, G., Crepaldi, T., & Graziani, A. (2007). Ghrelin and des-acyl ghrelin promote differentiation and fusion of C2C12 skeletal muscle cells. Molecular Biology of the Cell, 18(3), 986–994. https://doi.org/10.1091/mbc.e06-05-0402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pradhan, G., Samson, S. L., & Sun, Y. (2013). Ghrelin: Much more than a hunger hormone. Current Opinion in Clinical Nutrition and Metabolic Care, 16(6), 619–624. https://doi.org/10.1097/MCO.0b013e328365b9be

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sugiyama, M., Yamaki, A., Furuya, M., Inomata, N., Minamitake, Y., Ohsuye, K., & Kangawa, K. (2012). Ghrelin improves body weight loss and skeletal muscle catabolism associated with angiotensin II-induced cachexia in mice. Regulatory Peptides, 178(1–3), 21–28. https://doi.org/10.1016/j.regpep.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  24. Bresciani, E., Rapetti, D., Dona, F., Bulgarelli, I., Tamiazzo, L., Locatelli, V., & Torsello, A. (2006). Obestatin inhibits feeding but does not modulate GH and corticosterone secretion in the rat. Journal of Endocrinological Investigation , 29(8), RC16–RC18. https://doi.org/10.1007/BF03344175

    Article  CAS  PubMed  Google Scholar 

  25. Samson, W. K., White, M. M., Price, C., & Ferguson, A. V. (2007). Obestatin acts in brain to inhibit thirst. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 292(1), R637-643. https://doi.org/10.1152/ajpregu.00395.2006

    Article  CAS  PubMed  Google Scholar 

  26. Sun, Y., Butte, N. F., Garcia, J. M., & Smith, R. G. (2008). Characterization of adult ghrelin and ghrelin receptor knockout mice under positive and negative energy balance. Endocrinology, 149(2), 843–850. https://doi.org/10.1210/en.2007-0271

    Article  CAS  PubMed  Google Scholar 

  27. Pradhan, G., Wu, C. S., Han Lee, J., Kanikarla, P., Guo, S., Yechoor, V. K., Samson, S. L., & Sun, Y. (2017). Obestatin stimulates glucose-induced insulin secretion through ghrelin receptor GHS-R. Science and Reports, 7(1), 979. https://doi.org/10.1038/s41598-017-00888-0

    Article  CAS  Google Scholar 

  28. Granata, R., Volante, M., Settanni, F., Gauna, C., Ghe, C., Annunziata, M., Deidda, B., Gesmundo, I., Abribat, T., van der Lely, A. J., Muccioli, G., Ghigo, E., & Papotti, M. (2010). Unacylated ghrelin and obestatin increase islet cell mass and prevent diabetes in streptozotocin-treated newborn rats. Journal of Molecular Endocrinology, 45(1), 9–17. https://doi.org/10.1677/JME-09-0141

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, N., Yuan, C., Li, Z., Li, J., Li, X., Li, C., Li, R., & Wang, S. R. (2011). Meta-analysis of the relationship between obestatin and ghrelin levels and the ghrelin/obestatin ratio with respect to obesity. American Journal of the Medical Sciences, 341(1), 48–55. https://doi.org/10.1097/MAJ.0b013e3181ec41ed

    Article  PubMed  Google Scholar 

  30. Gurriaran-Rodriguez, U., Santos-Zas, I., Al-Massadi, O., Mosteiro, C. S., Beiroa, D., Nogueiras, R., Crujeiras, A. B., Seoane, L. M., Senaris, J., Garcia-Caballero, T., Gallego, R., Casanueva, F. F., Pazos, Y., & Camina, J. P. (2012). The obestatin/GPR39 system is up-regulated by muscle injury and functions as an autocrine regenerative system. Journal of Biological Chemistry, 287(45), 38379–38389. https://doi.org/10.1074/jbc.M112.374926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Santos-Zas, I., Cid-Diaz, T., Gonzalez-Sanchez, J., Gurriaran-Rodriguez, U., Seoane-Mosteiro, C., Porteiro, B., Nogueiras, R., Casabiell, X., Relova, J. L., Gallego, R., Mouly, V., Pazos, Y., & Camina, J. P. (2017). Obestatin controls skeletal muscle fiber-type determination. Science and Reports, 7(1), 2137. https://doi.org/10.1038/s41598-017-02337-4

    Article  CAS  Google Scholar 

  32. Zhang, W., Majumder, A., Wu, X., & Mulholland, M. W. (2009). Regulation of food intake and body weight by recombinant proghrelin. American Journal of Physiology. Endocrinology and Metabolism, 297(6), E1269-1275. https://doi.org/10.1152/ajpendo.00337.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sjogren, M., Duarte, A. I., McCourt, A. C., Shcherbina, L., Wierup, N., & Bjorkqvist, M. (2017). Ghrelin rescues skeletal muscle catabolic profile in the R6/2 mouse model of Huntington’s disease. Science and Reports, 7(1), 13896. https://doi.org/10.1038/s41598-017-13713-5

    Article  CAS  Google Scholar 

  34. Cid-Diaz, T., Leal-Lopez, S., Fernandez-Barreiro, F., Gonzalez-Sanchez, J., Santos-Zas, I., Andrade-Bulos, L. J., Rodriguez-Fuentes, M. E., Mosteiro, C. S., Mouly, V., Casabiell, X., Relova, J. L., Pazos, Y., & Camina, J. P. (2021). Obestatin signalling counteracts glucocorticoid-induced skeletal muscle atrophy via NEDD4/KLF15 axis. Journal of Cachexia, Sarcopenia and Muscle, 12(2), 493–505. https://doi.org/10.1002/jcsm.12677

    Article  PubMed  PubMed Central  Google Scholar 

  35. Villarreal, D., Pradhan, G., Zhou, Y., Xue, B., & Sun, Y. (2022). Diverse and complementary effects of ghrelin and obestatin. Biomolecules. https://doi.org/10.3390/biom12040517

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gurriaran-Rodriguez, U., Santos-Zas, I., Gonzalez-Sanchez, J., Beiroa, D., Moresi, V., Mosteiro, C. S., Lin, W., Vinuela, J. E., Senaris, J., Garcia-Caballero, T., Casanueva, F. F., Nogueiras, R., Gallego, R., Renaud, J. M., Adamo, S., Pazos, Y., & Camina, J. P. (2015). Action of obestatin in skeletal muscle repair: Stem cell expansion, muscle growth, and microenvironment remodeling. Molecular Therapy, 23(6), 1003–1021. https://doi.org/10.1038/mt.2015.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Poher, A. L., Tschop, M. H., & Muller, T. D. (2018). Ghrelin regulation of glucose metabolism. Peptides, 100, 236–242. https://doi.org/10.1016/j.peptides.2017.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Theander-Carrillo, C., Wiedmer, P., Cettour-Rose, P., Nogueiras, R., Perez-Tilve, D., Pfluger, P., Castaneda, T. R., Muzzin, P., Schurmann, A., Szanto, I., Tschop, M. H., & Rohner-Jeanrenaud, F. (2006). Ghrelin action in the brain controls adipocyte metabolism. The Journal of Clinical Investigation, 116(7), 1983–1993. https://doi.org/10.1172/JCI25811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pruszynska-Oszmalek, E., Szczepankiewicz, D., Hertig, I., Skrzypski, M., Sassek, M., Kaczmarek, P., Kolodziejski, P. A., Mackowiak, P., Nowak, K. W., Strowski, M. Z., & Wojciechowicz, T. (2013). Obestatin inhibits lipogenesis and glucose uptake in isolated primary rat adipocytes. Journal of Biological Regulators and Homeostatic Agents, 27(1), 23–33.

    CAS  PubMed  Google Scholar 

  40. Mano-Otagiri, A., Iwasaki-Sekino, A., Nemoto, T., Ohata, H., Shuto, Y., Nakabayashi, H., Sugihara, H., Oikawa, S., & Shibasaki, T. (2010). Genetic suppression of ghrelin receptors activates brown adipocyte function and decreases fat storage in rats. Regulatory Peptides, 160(1–3), 81–90. https://doi.org/10.1016/j.regpep.2009.11.010

    Article  CAS  PubMed  Google Scholar 

  41. Lin, L., Lee, J. H., Bongmba, O. Y., Ma, X., Zhu, X., Sheikh-Hamad, D., & Sun, Y. (2014). The suppression of ghrelin signaling mitigates age-associated thermogenic impairment. Aging (Albany NY), 6(12), 1019–1032. https://doi.org/10.18632/aging.100706

    Article  PubMed  Google Scholar 

  42. Szentirmai, E., Kapas, L., Sun, Y., Smith, R. G., & Krueger, J. M. (2009). The preproghrelin gene is required for the normal integration of thermoregulation and sleep in mice. Proceedings of the National Academy of Sciences, 106(33), 14069–14074. https://doi.org/10.1073/pnas.0903090106

    Article  Google Scholar 

  43. Szentirmai, E., Hajdu, I., Obal, F., Jr., & Krueger, J. M. (2006). Ghrelin-induced sleep responses in ad libitum fed and food-restricted rats. Brain Research, 1088(1), 131–140. https://doi.org/10.1016/j.brainres.2006.02.072

    Article  CAS  PubMed  Google Scholar 

  44. Jhala, U. S., Canettieri, G., Screaton, R. A., Kulkarni, R. N., Krajewski, S., Reed, J., Walker, J., Lin, X., White, M., & Montminy, M. (2003). cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2. Genes & Development, 17(13), 1575–1580. https://doi.org/10.1101/gad.1097103

    Article  CAS  Google Scholar 

  45. Ohta, K., Laborde, N. J., Kajiya, M., Shin, J., Zhu, T., Thondukolam, A. K., Min, C., Kamata, N., Karimbux, N. Y., Stashenko, P., & Kawai, T. (2011). Expression and possible immune-regulatory function of ghrelin in oral epithelium. Journal of Dental Research, 90(11), 1286–1292. https://doi.org/10.1177/0022034511420431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cieszkowski, J., Warzecha, Z., Ceranowicz, P., Ceranowicz, D., Kusnierz-Cabala, B., Pedziwiatr, M., Dembinski, M., Ambrozy, T., Kaczmarzyk, T., Pihut, M., Wieckiewicz, M., Olszanecki, R., & Dembinski, A. (2017). Therapeutic effect of exogenous ghrelin in the healing of gingival ulcers is mediated by the release of endogenous growth hormone and insulin-like growth factor-1. Journal Physiol Pharmacol, 68(4), 609–617.

    CAS  Google Scholar 

  47. McKee, K. K., Tan, C. P., Palyha, O. C., Liu, J., Feighner, S. D., Hreniuk, D. L., Smith, R. G., Howard, A. D., & Van der Ploeg, L. H. (1997). Cloning and characterization of two human G protein-coupled receptor genes (GPR38 and GPR39) related to the growth hormone secretagogue and neurotensin receptors. Genomics, 46(3), 426–434. https://doi.org/10.1006/geno.1997.5069

    Article  CAS  PubMed  Google Scholar 

  48. Hershfinkel, M., Moran, A., Grossman, N., & Sekler, I. (2001). A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates ion transport. Proc Natl Acad Sci U S A, 98(20), 11749–11754. https://doi.org/10.1073/pnas.201193398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, M., Song, W., Jin, C., Huang, K., Yu, Q., Qi, J., Zhang, Q., & He, Y. (2021). Pax3 and Pax7 Exhibit distinct and overlapping functions in marking muscle satellite cells and muscle repair in a marine teleost sebastes schlegelii. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms22073769

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang, Y., Guo, S., Zhuang, Y., Yun, Y., Xu, P., He, X., Guo, J., Yin, W., Xu, H. E., Xie, X., & Jiang, Y. (2021). Molecular recognition of an acyl-peptide hormone and activation of ghrelin receptor. Nature Communications, 12(1), 5064. https://doi.org/10.1038/s41467-021-25364-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Relaix, F., Montarras, D., Zaffran, S., Gayraud-Morel, B., Rocancourt, D., Tajbakhsh, S., Mansouri, A., Cumano, A., & Buckingham, M. (2006). Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. Journal of Cell Biology, 172(1), 91–102. https://doi.org/10.1083/jcb.200508044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang, Q., Li, Y., Zhang, X., & Chen, D. (2018). Zac1/GPR39 phosphorylating CaMK-II contributes to the distinct roles of Pax3 and Pax7 in myogenic progression. Biochimica et Biophysica Acta, Molecular Basis of Disease, 1864(2), 407–419. https://doi.org/10.1016/j.bbadis.2017.10.026

    Article  CAS  PubMed  Google Scholar 

  53. Borok, M., Didier, N., Gattazzo, F., Ozturk, T., Corneau, A., Rouard, H., & Relaix, F. (2021). Progressive and coordinated mobilization of the skeletal muscle niche throughout tissue repair revealed by single-cell proteomic analysis. Cells. https://doi.org/10.3390/cells10040744

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hirata, Y., Nomura, K., Senga, Y., Okada, Y., Kobayashi, K., Okamoto, S., Minokoshi, Y., Imamura, M., Takeda, S., Hosooka, T., & Ogawa, W. (2019). Hyperglycemia induces skeletal muscle atrophy via a WWP1/KLF15 axis. JCI Insight. https://doi.org/10.1172/jci.insight.124952

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fang, W. Y., Tseng, Y. T., Lee, T. Y., Fu, Y. C., Chang, W. H., Lo, W. W., Lin, C. L., & Lo, Y. C. (2021). Triptolide prevents LPS-induced skeletal muscle atrophy via inhibiting NF-kappaB/TNF-alpha and regulating protein synthesis/degradation pathway. British Journal of Pharmacology, 178(15), 2998–3016. https://doi.org/10.1111/bph.15472

    Article  CAS  PubMed  Google Scholar 

  56. Johansen, T., & Lamark, T. (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy, 7(3), 279–296. https://doi.org/10.4161/auto.7.3.14487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Weidberg, H., Shvets, E., & Elazar, Z. (2011). Biogenesis and cargo selectivity of autophagosomes. Annual Review of Biochemistry, 80, 125–156. https://doi.org/10.1146/annurev-biochem-052709-094552

    Article  CAS  PubMed  Google Scholar 

  58. Cid-Diaz, T., Santos-Zas, I., Gonzalez-Sanchez, J., Gurriaran-Rodriguez, U., Mosteiro, C. S., Casabiell, X., Garcia-Caballero, T., Mouly, V., Pazos, Y., & Camina, J. P. (2017). Obestatin controls the ubiquitin-proteasome and autophagy-lysosome systems in glucocorticoid-induced muscle cell atrophy. Journal of Cachexia, Sarcopenia and Muscle, 8(6), 974–990. https://doi.org/10.1002/jcsm.12222

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hassouna, R., Labarthe, A., Zizzari, P., Videau, C., Culler, M., Epelbaum, J., & Tolle, V. (2013). Actions of Agonists and Antagonists of the ghrelin/GHS-R Pathway on GH Secretion, Appetite, and cFos Activity. Front Endocrinol (Lausanne), 4, 25. https://doi.org/10.3389/fendo.2013.00025

    Article  CAS  PubMed  Google Scholar 

  60. Mosa, R. M., Zhang, Z., Shao, R., Deng, C., Chen, J., & Chen, C. (2015). Implications of ghrelin and hexarelin in diabetes and diabetes-associated heart diseases. Endocrine, 49(2), 307–323. https://doi.org/10.1007/s12020-015-0531-z

    Article  CAS  PubMed  Google Scholar 

  61. Pandya, N., DeMott-Friberg, R., Bowers, C. Y., Barkan, A. L., & Jaffe, C. A. (1998). Growth hormone (GH)-releasing peptide-6 requires endogenous hypothalamic GH-releasing hormone for maximal GH stimulation. Journal of Clinical Endocrinology and Metabolism, 83(4), 1186–1189. https://doi.org/10.1210/jcem.83.4.4711

    Article  CAS  PubMed  Google Scholar 

  62. Camilleri, M., & Acosta, A. (2015). Emerging treatments in Neurogastroenterology: Relamorelin: A novel gastrocolokinetic synthetic ghrelin agonist. Neurogastroenterology and Motility, 27(3), 324–332. https://doi.org/10.1111/nmo.12490

    Article  CAS  PubMed  Google Scholar 

  63. Liu, H., Sun, D., Myasnikov, A., Damian, M., Baneres, J. L., Sun, J., & Zhang, C. (2021). Structural basis of human ghrelin receptor signaling by ghrelin and the synthetic agonist ibutamoren. Nature Communications, 12(1), 6410. https://doi.org/10.1038/s41467-021-26735-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, H., & Garcia, J. M. (2015). Anamorelin hydrochloride for the treatment of cancer-anorexia-cachexia in NSCLC. Expert Opinion on Pharmacotherapy, 16(8), 1245–1253. https://doi.org/10.1517/14656566.2015.1041500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Adunsky, A., Chandler, J., Heyden, N., Lutkiewicz, J., Scott, B. B., Berd, Y., Liu, N., & Papanicolaou, D. A. (2011). MK-0677 (ibutamoren mesylate) for the treatment of patients recovering from hip fracture: A multicenter, randomized, placebo-controlled phase IIb study. Archives of Gerontology and Geriatrics, 53(2), 183–189. https://doi.org/10.1016/j.archger.2010.10.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would also like to thank Yenepoya Research Centre, Yenepoya, deemed to be University, for providing the online library resources for writing this review article.

Funding

This research was funded by the Department of Biotechnology (BT/PR39858/MED/30/2247/2020) Government of India and awarded to the corresponding author.

Author information

Authors and Affiliations

Authors

Contributions

AM and SM contributed to writing the paper. AM conceived the artwork. BB and SSP contributed to correcting the text and finalising the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Sudheer Shenoy P.

Ethics declarations

Conflict of interest

The authors have read the journal’s policy on disclosure of potential conflicts of interest and have none to declare. The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, A., Mandal, S., Bose, B. et al. Unlocking the Potential of Obestatin: A Novel Peptide Intervention for Skeletal Muscle Regeneration and Prevention of Atrophy. Mol Biotechnol 66, 948–959 (2024). https://doi.org/10.1007/s12033-023-01011-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-01011-7

Keywords

Navigation