Skip to main content

Advertisement

Log in

Heterologous Expression of Codon-Optimized Azurin Transferred by Magnetofection Method in MCF-10A Cells

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Transfection efficiency of the immortalized human breast epithelial cell line MCF-10A remains an issue that needs to be resolved. In this study, it was aimed to deliver a recombinant DNA (pCMV-Azu-GFP) to the MCF-10A cells by the magnetofection method using magnetic nanoparticles (MNPs) and a simple magnet to accelerate the DNA delivery. Surface positively modified silica-coated iron oxide MNPs (MSNP-NH2) were produced and characterized via TEM, FTIR, and DLS analyses. The recombinant DNA (rDNA) was obtained by the integration of codon-optimized azurin to produce a fusion protein. Then, rDNA cloned in Escherichia coli cells was validated by sequence analysis. The electrostatically conjugated rDNA on MSNP-NH2 with an enhancer polyethyleneimine (PEI) was studied by agarose gel electrophoresis and the optimum conditions were determined to apply to the cell. A dose-dependent statistical difference was observed on treated cells based on the MTS test. The expression of the fusion protein after magnetofection was determined using laser scanning confocal microscope imaging and western blot analysis. It was observed that the azurin gene could be transferred to MCF-10A cells by magnetofection. Thus, when the azurin gene is used as a breast cancer treatment agent, it can be expressed in healthy cells without toxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Karpiński, T. M., & Szkaradkiewicz, A. K. (2013). Anticancer peptides from bacteria. Bangladesh Journal of Pharmacology, 8(3), 343–348. https://doi.org/10.3329/bjp.v8i3.15704

    Article  Google Scholar 

  2. Gao, M., Zhou, J., Su, Z., & Huang, Y. (2017). Bacterial cupredoxin azurin hijacks cellular signaling networks: Protein–protein interactions and cancer therapy. Protein Science, 26, 2334–2341. https://doi.org/10.1002/pro.3310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Punj, V., Bhattacharyya, S., Saint-Dic, D., Vasu, C., Cunningham, E. A., Graves, J., Yamada, T., Constantinou, A. I., Christov, K., White, B., et al. (2004). Bacterial cupredoxin azurin as an inducer of apoptosis and regression in human breast cancer. Oncogene, 23(13), 2367–2378. https://doi.org/10.1038/sj.onc.1207376

    Article  CAS  PubMed  Google Scholar 

  4. Fialho, A. M., Bernardes, N., & Chakrabarty, A. M. (2016). Exploring the anticancer potential of the bacterial protein azurin. AIMS Microbiology, 2(3), 292–303. https://doi.org/10.3934/microbiol.2016.3.292

    Article  CAS  Google Scholar 

  5. Taylor, B. N., Mehta, R. R., Yamada, T., Lekmine, F., Christov, K., Chakrabarty, A. M., Green, A., Bratescu, L., Shilkaitis, A., Beattie, C. W., et al. (2009). Noncationic peptides obtained from azurin preferentially enter cancer cells. Cancer Research, 69(2), 537–546. https://doi.org/10.1158/0008-5472.CAN-08-2932

    Article  CAS  PubMed  Google Scholar 

  6. Johnson, I. S. (1983). Human insulin from recombinant DNA technology author (s): Irving S. Johnson. Science, 219(4585), 632–637.

    Article  CAS  PubMed  Google Scholar 

  7. Kami, D., Takeda, S., Itakura, Y., Gojo, S., & Watanabe, M. (2011). Application of magnetic nanoparticles to gene delivery. International Journal of Molecular Sciences, 12, 3705–3722. https://doi.org/10.3390/ijms12063705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim, T. K., & Eberwine, J. H. (2010). Mammalian cell transfection: The present and the future. Analytical and Bioanalytical Chemistry, 397(8), 3173–3178. https://doi.org/10.1007/s00216-010-3821-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Recillas-Targa, F. (2006). Multiple strategies for gene transfer, expression, knockdown, and chromatin influence in mammalian cell lines and transgenic animals. Molecular Biotechnology, 34(3), 337–354. https://doi.org/10.1385/MB:34:3:337

    Article  CAS  PubMed  Google Scholar 

  10. Zhao, X., Meng, Z., Wang, Y., Chen, W., Sun, C., Cui, B., Cui, J., Yu, M., Zeng, Z., Guo, S., et al. (2017). Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nature Plants, 3(12), 956–964. https://doi.org/10.1038/s41477-017-0063-z

    Article  CAS  PubMed  Google Scholar 

  11. Scherer, F., Anton, M., Schillinger, U., Henke, J., Bergemann, C., Krüger, A., Gänsbacher, B., & Plank, C. (2002). Magnetofection: Enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Therapy, 9(2), 102–109. https://doi.org/10.1038/sj.gt.3301624

    Article  CAS  PubMed  Google Scholar 

  12. Bi, Q., Song, X., Hu, A., Luo, T., Jin, R., Ai, H., & Nie, Y. (2020). Magnetofection: Magic magnetic nanoparticles for efficient gene delivery. Chinese Chemical Letters, 31(12), 3041–3046. https://doi.org/10.1016/j.cclet.2020.07.030

    Article  CAS  Google Scholar 

  13. Mykhaylyk, O., Antequera, Y. S., Vlaskou, D., & Plank, C. (2007). Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nature Protocols, 2(10), 2391–2411. https://doi.org/10.1038/nprot.2007.352

    Article  CAS  PubMed  Google Scholar 

  14. Lu, P., Cao, X., Zheng, J., Sun, Y., Tang, Z., & Zhao, M. (2023). Visualization and comparison of the level of apurinic/apyrimidinic endonuclease 1 in live normal/cancerous and neuron cells with a fluorescent nanoprobe. Molecules, 28(9), 3935. https://doi.org/10.3390/molecules28093935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matsuda, T., & Cepko, C. L. (2004). Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proceedings of the National Academy of Sciences USA, 101(1), 16–22. https://doi.org/10.1073/pnas.2235688100

    Article  CAS  Google Scholar 

  16. Solak, K., Mavi, A., & Yılmaz, B. (2021). Disulfiram-loaded functionalized magnetic nanoparticles combined with copper and sodium nitroprusside in breast cancer cells. Materials Science and Engineering C, 119, 111452. https://doi.org/10.1016/j.msec.2020.111452

    Article  CAS  PubMed  Google Scholar 

  17. Acar, M., Solak, K., Yildiz, S., Unver, Y., & Mavi, A. (2022). Comparative heating efficiency and cytotoxicity of magnetic silica nanoparticles for magnetic hyperthermia treatment on human breast cancer cells. 3 Biotech, 12, 1–12. https://doi.org/10.1007/s13205-022-03377-y

    Article  Google Scholar 

  18. Zhao, W., Cui, B., Peng, H., Qiu, H., & Wang, Y. (2015). Novel method to investigate the interaction force between etoposide and APTES-functionalized Fe3O4@nSiO2@mSiO2 nanocarrier for drug loading and release processes. Journal of Physical Chemistry C, 119(8), 4379–4386. https://doi.org/10.1021/jp512447s

    Article  CAS  Google Scholar 

  19. Kastrati, I., Edirisinghe, P. D., Wijewickrama, G. T., & Thatcher, G. R. J. (2010). Estrogen-induced apoptosis of breast epithelial cells is blocked by NO/CGMP and mediated by extranuclear estrogen receptors. Endocrinology, 151(12), 5602–5616. https://doi.org/10.1210/en.2010-0378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burdick, A. D., Ivnitski-Steele, I. D., Lauer, F. T., & Burchiel, S. W. (2006). PYK2 mediates anti-apoptotic AKT signaling in response to benzo[a]pyrene diol epoxide in mammary epithelial cells. Carcinogenesis, 27(11), 2331–2340. https://doi.org/10.1093/carcin/bgl083

    Article  CAS  PubMed  Google Scholar 

  21. Yildiz, S., Solak, K., Acar, M., Mavi, A., & Unver, Y. (2021). Magnetic nanoparticle mediated-gene delivery for simpler and more effective transformation of Pichia pastoris. Nanoscale Advances, 3(15), 4482–4491. https://doi.org/10.1039/D1NA00079A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  23. Ünver, Y., Kurbanoğlu, E. B., & Erdoğan, O. (2015). Expression, purification, and characterization of recombinant humanparaoxonase 1 (RhPON1) in Pichia pastoris. Turkish Journal of Biology, 39(4), 649–655. https://doi.org/10.3906/biy-1501-43

    Article  CAS  Google Scholar 

  24. Unver, Y., Yildiz, S., & Acar, M. (2022). Extracellular production of azurin from Pseudomonas aeruginosa in the presence of Triton X-100 or Tween 80. Bioprocess and Biosystems Engineering, 45, 553. https://doi.org/10.1007/s00449-021-02678-5

    Article  CAS  PubMed  Google Scholar 

  25. Kyung, H. C., Basma, H., Singh, J., & Cheng, P. W. (2005). Activation of CMV promoter-controlled glycosyltransferase and β-galactosidase glycogenes by butyrate, tricostatin A, and 5-aza-2′-deoxycytidine. Glycoconjugate Journal, 22, 63–69. https://doi.org/10.1007/s10719-005-0326-1

    Article  CAS  Google Scholar 

  26. Kim, C. H., Oh, Y., & Lee, T. H. (1997). Codon optimization for high-level expression of human erythropoietin (EPO) in mammalian cells. Gene, 199, 293–301. https://doi.org/10.1016/S0378-1119(97)00384-3

    Article  CAS  PubMed  Google Scholar 

  27. Lim, L. H., Li, H. Y., Cheong, N., Lee, B. W., & Chua, K. Y. (2004). High-level expression of a codon optimized recombinant dust mite allergen, Blo t 5, in Chinese hamster ovary cells. Biochemical and Biophysical Research Communications, 316(4), 991–996. https://doi.org/10.1016/j.bbrc.2004.02.148

    Article  CAS  PubMed  Google Scholar 

  28. Zuvin, M., Kuruoglu, E., Kaya, V. O., Unal, O., Kutlu, O., Yagci Acar, H., Gozuacik, D., & Kosar, A. (2019). Magnetofection of green fluorescent protein encoding DNA-bearing polyethyleneimine-coated superparamagnetic iron oxide nanoparticles to human breast cancer cells. ACS Omega, 4(7), 12366–12374. https://doi.org/10.1021/acsomega.9b01000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mady, M. M., Mohammed, W. A., El-Guendy, N. M., & Elsayed, A. A. (2011). Effect of polymer molecular weight on the DNA/PEI polyplexes properties. Romanian Journal of Biophysics, 21(2), 151–165.

    CAS  Google Scholar 

  30. Benjaminsen, R. V., Mattebjerg, M. A., Henriksen, J. R., Moghimi, S. M., & Andresen, T. L. (2013). The possible "proton sponge " effect of polyethylenimine (PEI) does not include change in lysosomal PH. Molecular Therapy, 21(1), 149–157. https://doi.org/10.1038/mt.2012.185

    Article  CAS  PubMed  Google Scholar 

  31. Akinc, A., Thomas, M., Klibanov, A. M., & Langer, R. (2005). Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. Journal of Gene Medicine, 7(5), 657–663. https://doi.org/10.1002/jgm.696

    Article  CAS  PubMed  Google Scholar 

  32. Wang, W., Li, W., Ou, L., Flick, E., Mark, P., Nesselmann, C., Lux, C. A., Gatzen, H. H., Kaminski, A., Liebold, A., et al. (2011). Polyethylenimine-mediated gene delivery into human bone marrow mesenchymal stem cells from patients. Journal of Cellular and Molecular Medicine, 15(9), 1989–1998. https://doi.org/10.1111/j.1582-4934.2010.01130.x

    Article  CAS  PubMed  Google Scholar 

  33. Kandemir, B. B. (2013). PEI—Starch nanoparticles for cancer gene therapy, ODTÜ.

  34. Dalton, A. C., & Barton, W. A. (2014). Over-expression of secreted proteins from mammalian cell lines. Protein Science, 23, 517–525. https://doi.org/10.1002/pro.2439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, X., Zhao, X., Fang, Y., Jiang, X., Duong, T., Fan, C., Huang, C. C., & Kain, S. R. (1998). Generation of destabilized green fluorescent protein as a transcription reporter. Journal of Biological Chemistry, 273(52), 34970–34975. https://doi.org/10.1074/jbc.273.52.34970

    Article  CAS  PubMed  Google Scholar 

  36. Yamada, T., Goto, M., Punj, V., Zaborina, O., Chen, M. L., Kimbara, K., Majumdar, D., Cunningham, E., Das Gupta, T. K., & Chakrabarty, A. M. (2002). Bacterial redox protein azurin, tumor suppressor protein P53, and regression of cancer. Proceedings of the National Academy of Sciences USA, 99(22), 14098–14103. https://doi.org/10.1073/pnas.222539699

    Article  CAS  Google Scholar 

  37. Unver, Y., Sensoy Gun, B., Acar, M., & Yildiz, S. (2020). Heterologous expression of azurin from Pseudomonas aeruginosa in the yeast Pichia pastoris. Preparative Biochemistry & Biotechnology. https://doi.org/10.1080/10826068.2020.1855444

    Article  Google Scholar 

  38. Invitrogen. Transfecting plasmid DNA into MCF10A cells using lipofectamine 3000 reagent.

  39. Mangipudi, S. S., Canine, B. F., Wang, Y., & Hatefi, A. (2009). Development of a genetically engineered biomimetic vector for targeted gene transfer to breast cancer cells. Molecular Pharmaceutics, 6(4), 1100–1109. https://doi.org/10.1021/mp800251x

    Article  CAS  PubMed  Google Scholar 

  40. Moradian, C., & Rahbarizadeh, F. (2019). Targeted toxin gene therapy of breast cancer stem cells using CXCR1 promoter and BFGF 5′UTR. Oncotargets and Therapy, 12, 8809–8820. https://doi.org/10.2147/ott.s221223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tanaka, H., Shirkoohi, R., Nakagawa, K., Qiao, H., Fujita, H., Okada, F., Hamada, J. I., Kuzumaki, S., Takimoto, M., & Kuzumaki, N. (2006). SiRNA gelsolin knockdown induces epithelial–mesenchymal transition with a cadherin switch in human mammary epithelial cells. International Journal of Cancer, 118(7), 1680–1691. https://doi.org/10.1002/ijc.21559

    Article  CAS  PubMed  Google Scholar 

  42. Dehghani, S., Alibolandi, M., Tehranizadeh, Z. A., Oskuee, R. K., Nosrati, R., Soltani, F., & Ramezani, M. (2021). Self-assembly of an aptamer-decorated chimeric peptide nanocarrier for targeted cancer gene delivery. Colloids and Surfaces B: Biointerfaces. https://doi.org/10.1016/j.colsurfb.2021.112047

    Article  PubMed  Google Scholar 

  43. Saqafi, B., & Rahbarizadeh, F. (2019). Polyethyleneimine-polyethylene glycol copolymer targeted by anti-HER2 nanobody for specific delivery of transcriptionally targeted TBid containing construct. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 501–511. https://doi.org/10.1080/21691401.2018.1549063

    Article  CAS  PubMed  Google Scholar 

  44. Yuan, X., Qin, B., Yin, H., Shi, Y., Jiang, M., Luo, L., Luo, Z., Zhang, J., Li, X., Zhu, C., et al. (2020). Virus-like nonvirus cationic liposome for efficient gene delivery via endoplasmic reticulum pathway. ACS Central Science, 6(2), 174–188. https://doi.org/10.1021/acscentsci.9b01052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors kindly acknowledge TÜBİTAK (The Scientific and Technological Research Council of Turkey) (Project Number: 118Z150) for the financial support and DAYTAM (East Anatolia High Technology Application and Research Center, Atatürk University, Erzurum, Turkey) for the equipment support. M.A. and K.S. are also thankful for The Council of Higher Education (CoHE, 100/2000) Ph.D. Scholarship Program, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yagmur Unver.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalakenger, S., Yildiz Arslan, S., Turhan, F. et al. Heterologous Expression of Codon-Optimized Azurin Transferred by Magnetofection Method in MCF-10A Cells. Mol Biotechnol 66, 1434–1445 (2024). https://doi.org/10.1007/s12033-023-00798-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00798-9

Keywords

Navigation