Skip to main content

Advertisement

Log in

Hsa_circITGA4/ miR-1468/EGFR/ PTEN a Master Regulators Axis in Glioblastoma Development and Progression

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In the fight against glioblastoma, circular RNA is emerging as a functional molecule. However, how circular RNA (circRNA) is regulated and what role it plays is still a mystery. In this research, different bioinformatics approaches were used to evaluate glioblastoma circRNA sequencing and array data, with the goal of developing a putative molecular sponge mechanism control network. The circRNAs were obtained from the Gene Expression Omnibus datasets. MicroRNA-circRNA interactions were predicted using CircInteractome. The microRNAs' expression and survival trends were screened using the TCGA database. MicroRNA gene targets were predicted using the MiRnet database. Sponge network gene candidates were screened using data from the GEPIA. The roles of the targeted genes were to be explained by analyzing data from Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes. To build the network and display the outcomes, we utilized python program, and enrichment online Bioinformatics databases. The circRNAs hsa_circITGA4_002, hsa_circITGA4_001, hsa_circITGA4_003, hsa_circ_0030855, hsa_circ_0030857 were chosen from among GBM patients and control group. Upregulation of hsa-miR-1468, hsa-miR-3683, hsa-miR-1273c, and hsa-miR-4665-3p were associated with a poor prognosis in GBM. MicroRNA targets such as ITGA4, LAMA2, EGFR, PTEN, COL1A4, and NCAM2 were analyzed using expression and survival data. The Apoptosis, cell adhesion molecules, PI3K/AKT and P53 signaling pathways were the most abundant functional categories among gene targets. The circRNA molecular sponge regulatory network includes hsa-miR-1468 and hsa-miR-4665-3p. In this network, hs hsa_circITGA4_002, hsa_circITGA4_001, hsa_circ_0030857, EGFR, PTEN, and ITGA4 may represent GBM therapeutic targets. Their role in GBM needs additional study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Kaptein, F. H. J., Stals, M. A. M., Kapteijn, M. Y., Cannegieter, S. C., Dirven, L., van Duinen, S. G., et al. (2022). Incidence and determinants of thrombotic and bleeding complications in patients with glioblastoma. Journal of Thrombosis and Haemostasis, 20(7), 1665–1673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tan, A. C., Ashley, D. M., López, G. Y., Malinzak, M., Friedman, H. S., & Khasraw, M. (2020). Management of glioblastoma: State of the art and future directions. CA: A Cancer Journal for Clinicians, 70(4), 299–312.

    PubMed  Google Scholar 

  3. Fan, X., Xiong, Y., & Wang, Y. (2019). A reignited debate over the cell(s) of origin for glioblastoma and its clinical implications. Frontiers in Medicine, 13(5), 531–539.

    Article  Google Scholar 

  4. AlcantaraLlaguno, S., Sun, D., Pedraza, A. M., Vera, E., Wang, Z., Burns, D. K., et al. (2019). Cell-of-origin susceptibility to glioblastoma formation declines with neural lineage restriction. Nature Neuroscience, 22(4), 545–555.

    Article  Google Scholar 

  5. Wen, P. Y., Weller, M., Lee, E. Q., Alexander, B. M., Barnholtz-Sloan, J. S., Barthel, F. P., et al. (2020). Glioblastoma in adults: A Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro-Oncology, 22(8), 1073–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bahadur, S., Sahu, A. K., Baghel, P., & Saha, S. (2019). Current promising treatment strategy for glioblastoma multiform: A review. Oncology Reviews, 13(2), 417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sanders, S., & Debinski, W. (2020). Challenges to successful implementation of the immune checkpoint inhibitors for treatment of glioblastoma. International Journal of Molecular Sciences, 21(8), 2759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Majc, B., Novak, M., Kopitar-Jerala, N., Jewett, A., & Breznik, B. (2021). Immunotherapy of glioblastoma: Current strategies and challenges in tumor model development. Cells, 10(2), 265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, J., Zhu, S., Meng, N., He, Y., Lu, R., & Yan, G.-R. (2019). ncRNA-encoded peptides or proteins and cancer. Molecular Therapy, 27(10), 1718–1725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fabbri, M., Girnita, L., Varani, G., & Calin, G. A. (2019). Decrypting noncoding RNA interactions, structures, and functional networks. Genome Research, 29(9), 1377–1388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shi, Y., Jia, X., & Xu, J. (2020). The new function of circRNA: Translation. Clinical and Translational Oncology, 22(12), 2162–2169.

    Article  CAS  PubMed  Google Scholar 

  12. Cao, Y.-Z., Sun, J.-Y., Chen, Y.-X., Wen, C.-C., & Wei, L. (2021). The roles of circRNAs in cancers: Perspectives from molecular functions. Gene, 767, 145182.

    Article  CAS  PubMed  Google Scholar 

  13. Hosseini, M.M., Karimi, A., Behroozaghdam, M., Javidi, M.A., Ghiasvand, S., Bereimipour, A., et al. (2017). Cytotoxic and apoptogenic effects of cyanidin-3-glucoside on the glioblastoma cell line. World Neurosurgery, 108, 94–100.

    Article  PubMed  Google Scholar 

  14. Chen, J., Gu, J., Tang, M., Liao, Z., Tang, R., Zhou, L., et al. (2022). Regulation of cancer progression by circRNA and functional proteins. Journal of Cellular Physiology, 237(1), 373–388.

    Article  CAS  PubMed  Google Scholar 

  15. Liu, Y., Chen, G., Wang, B., Wu, H., Zhang, Y., & Ye, H. (2021). Silencing circRNA protein kinase C iota (circ-PRKCI) suppresses cell progression and glycolysis of human papillary thyroid cancer through circ-PRKCI/miR-335/E2F3 ceRNA axis. Endocrine Journal., 68(6), 713–727.

    Article  CAS  PubMed  Google Scholar 

  16. Hong, W., Xue, M., Jiang, J., Zhang, Y., & Gao, X. (2020). Circular RNA circ-CPA4/let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC). Journal of Experimental & Clinical Cancer Research., 39(1), 1–19.

    Article  Google Scholar 

  17. Liu, J., Hou, K., Ji, H., Mi, S., Yu, G., Hu, S., et al. (2020). Overexpression of circular RNA circ-CDC45 facilitates glioma cell progression by sponging miR-516b and miR-527 and predicts an adverse prognosis. Journal of Cellular Biochemistry, 121(1), 690–697.

    Article  CAS  PubMed  Google Scholar 

  18. Jin, Y., Li, L., Zhu, T., & Liu, G. (2019). Circular RNA circ\_0102049 promotes cell progression as ceRNA to target MDM2 via sponging miR-1304-5p in osteosarcoma. Pathology Practice, 215(12), 152688.

    Article  CAS  Google Scholar 

  19. Guo, Q., Guo, J., Liu, W., Hu, S., Hu, X., Wang, Q., et al. (2022). Circ-EGFR functions as an inhibitory factor in the malignant progression of glioma by regulating the miR-183-5p/TUSC2 axis. Cellular and Molecular Neurobiology, 42(7), 2245–2256.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Y., Geng, X., Xu, J., Li, Q., Hao, L., Zeng, Z., et al. (2021). Identification and characterization of N6-methyladenosine modification of circRNAs in glioblastoma. Journal of Cellular and Molecular Medicine, 25(15), 7204–7217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., & Ishiguro-Watanabe, M. (2023). KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Research, 51(D1), D587–D592.

    Article  CAS  PubMed  Google Scholar 

  22. Chen, L., & Shan, G. (2021). CircRNA in cancer: Fundamental mechanism and clinical potential. Cancer Letters, 505, 49–57.

    Article  CAS  PubMed  Google Scholar 

  23. Kristensen, L. S., Jakobsen, T., Hager, H., & Kjems, J. (2022). The emerging roles of circRNAs in cancer and oncology. Nature Reviews Clinical Oncology, 19(3), 188–206.

    Article  CAS  PubMed  Google Scholar 

  24. Arnaiz, E., Sole, C., Manterola, L., Iparraguirre, L., Otaegui, D., & Lawrie, C. H. (2019). CircRNAs and cancer: Biomarkers and master regulators. In T. Vincent (Ed.), Seminars in cancer biology (pp. 90–99). London: Academic Press.

    Google Scholar 

  25. Visci, G., Tolomeo, D., Agostini, A., Traversa, D., Macchia, G., & Storlazzi, C. T. (2020). CircRNAs and fusion-circRNAs in cancer: New players in an old game. Cellular Signalling, 75, 109747.

    Article  CAS  PubMed  Google Scholar 

  26. Liu, X., Wen, J., Li, C., Wang, H., Wang, J., & Zou, H. (2020). High-yield methylation markers for stool-based detection of colorectal cancer. Digestive Diseases and Sciences, 65(6), 1710–1719.

    Article  CAS  PubMed  Google Scholar 

  27. Mo, J., Zhang, J., Huang, H., Liu, C., Cheng, Y., Mo, Y., et al. (2022). The early predictive effect of low expression of the ITGA4 in colorectal cancer. Journal of Gastrointestinal Oncology, 13(1), 265.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fang, T., Yin, X., Wang, Y., Wang, H., Wang, X., Xue, Y., et al. (2022). Lymph node metastasis-related gene ITGA4 promotes the proliferation, migration, and invasion of gastric cancer cells by regulating tumor immune microenvironment. Journal of Oncology, 2022, 1315677.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Long, T., Li, X., Zhang, G., Qiu, C., Huan, O., Sun, C., et al. (2021). Single nucleotide polymorphism mutation related genes in bladder cancer for the treatment of patients: A study based on the TCGA database. Biotechnology & Biotechnological Equipment, 35(1), 214–223.

    Article  CAS  Google Scholar 

  30. Li, S., Hu, J., Li, G., Mai, H., Gao, Y., Liang, B., et al. (2022). Epigenetic regulation of LINC01270 in breast cancer progression by mediating LAMA2 promoter methylation and MAPK signaling pathway. Cell Biology and Toxicology. https://doi.org/10.1007/s10565-022-09763-9

    Article  PubMed  PubMed Central  Google Scholar 

  31. Uribe, M. L., Marrocco, I., & Yarden, Y. (2021). EGFR in cancer: Signaling mechanisms, drugs, and acquired resistance. Cancers (Basel), 13(11), 2748.

    Article  CAS  PubMed  Google Scholar 

  32. She, K., Fang, S., Du, W., Fan, X., He, J., Pan, H., et al. (2019). SCD1 is required for EGFR-targeting cancer therapy of lung cancer via re-activation of EGFR/PI3K/AKT signals. Cancer Cell International, 19(1), 1–11.

    Article  Google Scholar 

  33. Duwa, R., Banstola, A., Emami, F., Jeong, J.-H., Lee, S., & Yook, S. (2020). Cetuximab conjugated temozolomide-loaded poly (lactic-co-glycolic acid) nanoparticles for targeted nanomedicine in EGFR overexpressing cancer cells. Journal of Drug Delivery Science and Technology, 60, 101928.

    Article  CAS  Google Scholar 

  34. Soto-Gamez, A., Chen, D., Nabuurs, A. G. E., Quax, W. J., Demaria, M., & Boersma, Y. L. (2020). A bispecific inhibitor of the EGFR/ADAM17 axis decreases cell proliferation and migration of EGFR-dependent cancer cells. Cancers (Basel), 12(2), 411.

    Article  CAS  PubMed  Google Scholar 

  35. Raoof, S., Mulford, I. J., Frisco-Cabanos, H., Nangia, V., Timonina, D., Labrot, E., et al. (2019). Targeting FGFR overcomes EMT-mediated resistance in EGFR mutant non-small cell lung cancer. Oncogene, 38(37), 6399–6413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all colleagues in the core facilities for their support.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors Participated in study design, data collection and evaluation, drafting and statistical analysis. Contributed extensively in interpretation of the data and the conclusion and figure design. All authors performed editing and approving the final version of this paper for submission, also participated in the finalization of the manuscript and approved the final draft.

Corresponding author

Correspondence to Sayyed Mohammad Hossein Ghaderian.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tutunchi, S., Bereimipour, A. & Ghaderian, S.M.H. Hsa_circITGA4/ miR-1468/EGFR/ PTEN a Master Regulators Axis in Glioblastoma Development and Progression. Mol Biotechnol 66, 90–101 (2024). https://doi.org/10.1007/s12033-023-00735-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00735-w

Keywords

Navigation