Skip to main content
Log in

miRNAs and Their Target Genes Play a Critical Role in Response to Heat Stress in Cynodon dactylon (L.) Pers.

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Annual global temperature is increasing rapidly. Therefore, in the near future, plants will be exposed to severe heat stress. However, the potential of microRNAs-mediated molecular mechanism for modulating the expression of their target genes is unclear. To investigate the changes of miRNAs in thermo-tolerant plants, in this study, we first investigated the impact of four high temperature regimes including 35/30 °C, 40/35 °C, 45/40 °C, and 50/45 °C in a day/night cycle for 21 days on the physiological traits (total chlorophyll, relative water content and electrolyte leakage and total soluble protein), antioxidant enzymes activities (superoxide dismutase, ascorbic peroxidase, catalase and peroxidase), and osmolytes (total soluble carbohydrates and starch) in two bermudagrass accessions named Malayer and Gorgan. The results showed that more chlorophyll and the relative water content, lower ion leakage, more efficient protein and carbon metabolism and activation of defense proteins (such as antioxidant enzymes) in Gorgan accession, led to better maintained plant growth and activity during heat stress. In the next stage, to investigate the role of miRNAs and their target genes in response to heat stress in a thermo-tolerant plant, the impact of severe heat stress (45/40 °C) was evaluated on the expression of three miRNAs (miRNA159a, miRNA160a and miRNA164f) and their target genes (GAMYB, ARF17 and NAC1, respectively). All measurements were performed in leaves and roots simultaneously. Heat stress significantly induced the expression of three miRNAs in leaves of two accession, while having different effects on the expression of these miRNAs in roots. The results showed that a decrease in the expression of the transcription factor ARF17, no change in the expression of the transcription factor NAC1, and an increase in the expression of the transcription factor GAMYB in leaf and root tissues of Gorgan accession led to improved heat tolerance in it. These results also showed that the effect of miRNAs on the modulating expression of target mRNAs in leaves and roots is different under heat stress, and miRNAs and mRNAs show spatiotemporal expression. Therefore, the simultaneous analysis of miRNAs and mRNAs expressions in shoot and roots is needed to comprehensively understand miRNAs regulatory function under heat stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Alam, M. N., Zhang, L., Yang, L., Islam, M., Liu, Y., Luo, H., Yang, P., Wang, Q., & Chan, Z. (2018). Transcriptomic profiling of tall fescue in response to heat stress and improved thermotolerance by melatonin and 24-epibrassinolide. BMC Genomics, 19, 1–14.

    Article  Google Scholar 

  2. Zhao, Q., Zhou, L., Liu, J., Du, X., Huang, F., Pan, G., & Cheng, F. (2018). Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress. Plant Physiology and Biochemistry, 122, 90–101.

    Article  CAS  PubMed  Google Scholar 

  3. Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14, 9643–9684.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhou, R., Yu, X., Li, X., Dos Santos, T. M., Rosenqvist, E., & Ottosen, C. O. (2020). Combined high light and heat stress induced complex response in tomato with better leaf cooling after heat priming. Plant Physiology and Biochemistry, 151, 1–9.

    Article  CAS  PubMed  Google Scholar 

  5. Mesa, T., Polo, J., Arabia, A., Caselles, V., & Munné-Bosch, S. (2022). Differential physiological response to heat and cold stress of tomato plants and its implication on fruit quality. Journal of Plant Physiology, 268, 153581.

    Article  CAS  PubMed  Google Scholar 

  6. Tian, C., Zhang, Z., Huang, Y., Xu, J., Liu, Z., Xiang, Z., Zhao, F., Xue, J., Xue, T., & Duan, Y. (2022). Functional characterization of the Pinellia ternata cytoplasmic class II small heat shock protein gene PtsHSP17. 2 via promoter analysis and overexpression in tobacco. Plant Physiology and Biochemistry, 177, 1–9.

    Article  CAS  PubMed  Google Scholar 

  7. Lin, J.-S., Kuo, C.-C., Yang, I.-C., Tsai, W.-A., Shen, Y.-H., Lin, C.-C., Liang, Y.-C., Li, Y.-C., Kuo, Y.-W., & King, Y.-C. (2018). MicroRNA160 modulates plant development and heat shock protein gene expression to mediate heat tolerance in Arabidopsis. Frontiers in Plant Science, 9, 68.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 134, 1683–1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. von Koskull-Döring, P., Scharf, K.-D., & Nover, L. (2007). The diversity of plant heat stress transcription factors. Trends in Plant Science, 12, 452–457.

    Article  Google Scholar 

  10. Huang, B., Rachmilevitch, S., & Xu, J. (2012). Root carbon and protein metabolism associated with heat tolerance. Journal of Experimental Botany, 63, 3455–3465.

    Article  CAS  PubMed  Google Scholar 

  11. Weng, M., Yang, Y., Feng, H., Pan, Z., Shen, W. H., Zhu, Y., & Dong, A. (2014). Histone chaperone ASF1 is involved in gene transcription activation in response to heat stress in a rabidopsis thaliana. Plant, Cell & Environment, 37, 2128–2138.

    Article  CAS  Google Scholar 

  12. Leeggangers, H. A., Nijveen, H., Bigas, J. N., Hilhorst, H. W., & Immink, R. G. (2017). Molecular regulation of temperature-dependent floral induction in Tulipa gesneriana. Plant Physiology, 173, 1904–1919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liang, D., Gao, F., Ni, Z., Lin, L., Deng, Q., Tang, Y., Wang, X., Luo, X., & Xia, H. (2018). Melatonin improves heat tolerance in kiwifruit seedlings through promoting antioxidant enzymatic activity and glutathione S-transferase transcription. Molecules, 23, 584.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Xu, Y., & Huang, B. (2018). Comparative transcriptomic analysis reveals common molecular factors responsive to heat and drought stress in Agrostis stolonifera. Scientific Reports, 8, 1–12.

    Article  Google Scholar 

  15. Balfagón, D., Sengupta, S., Gómez-Cadenas, A., Fritschi, F. B., Azad, R. K., Mittler, R., & Zandalinas, S. I. (2019). Jasmonic acid is required for plant acclimation to a combination of high light and heat stress. Plant Physiology, 181, 1668–1682.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang, M., An, P., Li, H., Wang, X., Zhou, J., Dong, P., Zhao, Y., Wang, Q., & Li, C. (2019). The miRNA-mediated post-transcriptional regulation of maize in response to high temperature. International Journal of Molecular Sciences, 20, 1754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, J., Zhao, S., Yu, X., Du, W., Li, H., Sun, Y., Sun, H., & Ruan, C. (2021). Role of Xanthoceras sorbifolium MYB44 in tolerance to combined drought and heat stress via modulation of stomatal closure and ROS homeostasis. Plant Physiology and Biochemistry, 162, 410–420.

    Article  CAS  PubMed  Google Scholar 

  18. Singh, P., Dutta, P., & Chakrabarty, D. (2021). miRNAs play critical roles in response to abiotic stress by modulating cross-talk of phytohormone signaling. Plant Cell Reports, 40, 1617–1630.

    Article  CAS  PubMed  Google Scholar 

  19. Zhao, J., He, Q., Chen, G., Wang, L., & Jin, B. (2016). Regulation of non-coding RNAs in heat stress responses of plants. Frontiers in Plant Science, 7, 1213.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ding, Y., Huang, L., Jiang, Q., & Zhu, C. (2020). MicroRNAs as important regulators of heat stress responses in plants. Journal of Agricultural and Food Chemistry, 68, 11320–11326.

    Article  CAS  PubMed  Google Scholar 

  21. Liu, X., Xia, B., Purente, N., Chen, B., Zhou, Y., & He, M. (2021). Transgenic Chrysanthemum indicum overexpressing cin-miR396a exhibits altered plant development and reduced salt and drought tolerance. Plant Physiology and Biochemistry, 168, 17–26.

    Article  CAS  PubMed  Google Scholar 

  22. Srivastava, S., & Suprasanna, P. (2021). MicroRNAs: Tiny, powerful players of metal stress responses in plants. Plant Physiology and Biochemistry, 166(9), 938–1028.

    Google Scholar 

  23. Luo, P., Di, D.-W., Wu, L., Yang, J., Lu, Y., & Shi, W. (2022). MicroRNAs are involved in regulating plant development and stress response through fine-tuning of TIR1/AFB-dependent auxin signaling. International Journal of Molecular Sciences, 23, 510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, C., Tian, M., & Zhang, Y. (2021). Characterization of microRNAs involved in asymbiotic germination of Bletilla striata (Orchidaceae) seeds. Plant Physiology and Biochemistry, 167, 163–173.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, B., & Unver, T. (2018). A critical and speculative review on microRNA technology in crop improvement: Current challenges and future directions. Plant Science, 274, 193–200.

    Article  CAS  PubMed  Google Scholar 

  26. Singh, R. K., Prasad, A., Maurya, J., & Prasad, M. (2021). Regulation of small RNA-mediated high temperature stress responses in crop plants. Plant Cell Reports. https://doi.org/10.1007/s00299-021-02745-x

    Article  PubMed  Google Scholar 

  27. Kim, C., Jang, C. S., Kamps, T. L., Robertson, J. S., Feltus, F. A., & Paterson, A. H. (2008). Transcriptome analysis of leaf tissue from Bermudagrass (Cynodon dactylon) using a normalised cDNA library. Functional Plant Biology, 35, 585–594.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, B., Xiao, X., Zong, J., Chen, J., Li, J., Guo, H., & Liu, J. (2017). Comparative transcriptome analysis provides new insights into erect and prostrate growth in bermudagrass (Cynodon dactylon L.). Plant Physiology and Biochemistry, 121, 31–37.

    Article  CAS  PubMed  Google Scholar 

  29. Chen, S., Xu, X., Ma, Z., Liu, J., & Zhang, B. (2021). Organ-specific transcriptome analysis identifies candidate genes involved in the stem specialization of bermudagrass (Cynodon dactylon L.). Frontiers in Genetics. https://doi.org/10.3389/fgene.2021.678673

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu, N., Lin, S., & Huang, B. (2017). Differential effects of glycine betaine and spermidine on osmotic adjustment and antioxidant defense contributing to improved drought tolerance in creeping bentgrass. Journal of the American Society for Horticultural Science, 142, 20–26.

    Article  CAS  Google Scholar 

  31. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1.

    Article  CAS  PubMed  Google Scholar 

  32. Katuwal, K. B., Schwartz, B., & Jespersen, D. (2020). Desiccation avoidance and drought tolerance strategies in bermudagrasses. Environmental and Experimental Botany, 171, 103947.

    Article  CAS  Google Scholar 

  33. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

    Article  CAS  PubMed  Google Scholar 

  34. Sunkar, R. (2010). Plant stress tolerance. Methods in Molecular Biology, 639, 401.

    Google Scholar 

  35. Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867–880.

    CAS  Google Scholar 

  36. Aebi, H. (1984). [13] Catalase in vitro. Methods in enzymology (Vol. 105, pp. 121–126). Cambridge: Academic press.

    Google Scholar 

  37. Hemeda, H. M., & Klein, B. P. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science, 55(1), 184–185.

    Article  CAS  Google Scholar 

  38. Zhang, B., Fan, J., & Liu, J. (2019). Comparative proteomic analysis provides new insights into the specialization of shoots and stolons in bermudagrass (Cynodon dactylon L.). BMC Genomics, 20, 1–15.

    Google Scholar 

  39. Hu, Z., Liu, A., Gitau, M. M., Huang, X., Chen, L., & Fu, J. (2018). Comparative proteomic analysis provides new insights into the specialization of shoots and stolons in bermudagrass (Cynodon dactylon L.). BMC Genomics, 145, 64–74.

    CAS  Google Scholar 

  40. Forero, D. A., González-Giraldo, Y., Castro-Vega, L. J., & Barreto, G. E. (2019). qPCR-based methods for expression analysis of miRNAs. BioTechniques, 67, 192–199.

    Article  CAS  PubMed  Google Scholar 

  41. Liu, X., Liu, S., Zhang, J., Wu, Y., Wu, W., Zhang, Y., Liu, B., Tang, R., He, L., & Li, R. (2020). Optimization of reference genes for qRT-PCR analysis of microRNA expression under abiotic stress conditions in sweetpotato. Plant Physiology and Biochemistry, 154, 379–386.

    Article  CAS  PubMed  Google Scholar 

  42. Sailaja, B., Anjum, N., Vishnu Prasanth, V., Sarla, N., Subrahmanyam, D., Voleti, S., Viraktamath, B., & Mangrauthia, S. K. (2014). Comparative study of susceptible and tolerant genotype reveals efficient recovery and root system contributes to heat stress tolerance in rice. Plant Molecular Biology Reporter, 32, 1228–1240.

    Article  CAS  Google Scholar 

  43. Jiang, Y., & Huang, B. (2001). Physiological responses to heat stress alone or in combination with drought: A comparison between tall fescue and perennial ryegrass. HortScience, 36, 682–686.

    Article  Google Scholar 

  44. Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M. Z., Alharby, H., Wu, C., Wang, D., & Huang, J. (2017). Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science, 8, 1147.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wu, W., Duncan, R. W., & Ma, B. L. (2021). Crop lodging, pod fertility and yield formation in canola under varying degrees of short-term heat stress during flowering. Journal of Agronomy and Crop Science, 207, 690–704.

    Article  CAS  Google Scholar 

  46. Cottee, N. S., Wilson, I. W., Tan, D. K., & Bange, M. P. (2013). Understanding the molecular events underpinning cultivar differences in the physiological performance and heat tolerance of cotton (Gossypium hirsutum). Functional Plant Biology, 41, 56–67.

    Article  PubMed  Google Scholar 

  47. MacNevin, W., & Urone, P. (1953). Separation of hydrogen peroxide from organic hydroperoxides. Analytical Chemistry, 25, 1760–1761.

    Article  CAS  Google Scholar 

  48. Bose, J., Rodrigo-Moreno, A., & Shabala, S. (2014). ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65, 1241–1257.

    Article  CAS  PubMed  Google Scholar 

  49. Martinez, V., Nieves-Cordones, M., Lopez-Delacalle, M., Rodenas, R., Mestre, T. C., Garcia-Sanchez, F., Rubio, F., Nortes, P. A., Mittler, R., & Rivero, R. M. (2018). Tolerance to stress combination in tomato plants: New insights in the protective role of melatonin. Molecules, 23, 535.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Liu, M., Sun, T., Liu, C., Zhang, H., Wang, W., Wang, Y., Xiang, L., & Chan, Z. (2022). Integrated physiological and transcriptomic analyses of two warm-and cool-season turfgrass species in response to heat stress. Plant Physiology and Biochemistry, 170, 275–286.

    Article  CAS  PubMed  Google Scholar 

  51. Sharma, P., & Dubey, R. S. (2005). Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regulation, 46, 209–221.

    Article  CAS  Google Scholar 

  52. Chakravarty, D., Banerjee, M., Bihani, S. C., & Ballal, A. (2016). A salt-inducible Mn-catalase (KatB) protects cyanobacterium from oxidative stress. Plant Physiology, 170(2), 761–773.

    Article  CAS  PubMed  Google Scholar 

  53. Chakravarty, D., Bihani, S. C., Banerjee, M., & Ballal, A. (2019). Novel molecular insights into the anti-oxidative stress response and structure–function of a salt-inducible cyanobacterial Mn-catalase. Plant, Cell & Environment, 42(8), 2508–2521.

    Article  CAS  Google Scholar 

  54. Jambunathan, N. (2010). Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. Plant stress tolerance: methods and protocols. https://doi.org/10.1007/978-1-60761-702-0_18

    Article  Google Scholar 

  55. Demidchik, V., Straltsova, D., Medvedev, S. S., Pozhvanov, G. A., Sokolik, A., & Yurin, V. (2014). Stress-induced electrolyte leakage: The role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 65(5), 1259–1270.

    Article  CAS  PubMed  Google Scholar 

  56. Braun, D. M., Wang, L., & Ruan, Y.-L. (2014). Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. Journal of Experimental Botany, 65, 1713–1735.

    Article  CAS  PubMed  Google Scholar 

  57. Osorio, S., Ruan, Y.-L., & Fernie, A. R. (2014). An update on source-to-sink carbon partitioning in tomato. Frontiers in Plant Science, 5, 516.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Julius, B. T., Leach, K. A., Tran, T. M., Mertz, R. A., & Braun, D. M. (2017). Sugar transporters in plants: New insights and discoveries. Plant and Cell Physiology, 58, 1442–1460.

    Article  CAS  PubMed  Google Scholar 

  59. Zhou, R., Kjaer, K., Rosenqvist, E., Yu, X., Wu, Z., & Ottosen, C. O. (2017). Physiological response to heat stress during seedling and anthesis stage in tomato genotypes differing in heat tolerance. Journal of Agronomy and Crop Science, 203, 68–80.

    Article  CAS  Google Scholar 

  60. Du, H., Wang, Z., Yu, W., Liu, Y., & Huang, B. (2011). Differential metabolic responses of perennial grass Cynodon transvaalensis×Cynodon dactylon (C4) and Poa pratensis (C3) to heat stress. Physiologia Plantarum, 141(3), 251–264.

    Article  CAS  PubMed  Google Scholar 

  61. Lambers, H., Chapin, F. S., Pons, T. L., Lambers, H., Chapin, F. S., & Pons, T. L. (1998). Biotic influences. Plant Physiological Ecology. https://doi.org/10.1007/978-1-4757-2855-2_9

    Article  Google Scholar 

  62. Rachmilevitch, S., Huang, B., & Lambers, H. (2006). Assimilation and allocation of carbon and nitrogen of thermal and nonthermal Agrostis species in response to high soil temperature. New Phytologist, 170(3), 479–490.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, B. (2015). MicroRNA: A new target for improving plant tolerance to abiotic stress. Journal of Experimental Botany, 66(7), 1749–1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. He, Q., Zhu, S., & Zhang, B. (2014). MicroRNA–target gene responses to lead-induced stress in cotton (Gossypium hirsutum L.). Functional & Integrative Genomics, 14(3), 507–515. https://doi.org/10.1007/s10142-014-0378-z

    Article  CAS  Google Scholar 

  65. Ding, Y., Ma, Y., Liu, N., Xu, J., Hu, Q., Li, Y., Wu, Y., Xie, S., Zhu, L., & Min, L. (2017). micro RNA s involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum). The Plant Journal, 91(6), 977–994.

    Article  CAS  PubMed  Google Scholar 

  66. Singh, S., & Singh, A. (2021). A prescient evolutionary model for genesis, duplication and differentiation of miR160 homologs in Brassicaceae. Molecular Genetics and Genomics, 296(4), 985–1003.

    Article  CAS  PubMed  Google Scholar 

  67. Gutierrez, L., Bussell, J. D., Pacurar, D. I., Schwambach, J., Pacurar, M., & Bellini, C. (2009). Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. The Plant Cell, 21(10), 3119–3132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mallory, A. C., Bartel, D. P., & Bartel, B. (2005). MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. The Plant Cell, 17(5), 1360–1375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang, J., Li, Z., & Zhao, D. (2016). Deregulation of the OsmiR160 target gene OsARF18 causes growth and developmental defects with an alteration of auxin signaling in rice. Scientific Reports, 6(1), 1–14.

    Google Scholar 

  70. Cui, G., Zhao, M., Zhang, S., Wang, Z., Meng, M., Sun, F., Zhang, C., & Xi, Y. (2020). MicroRNA and regulation of auxin and cytokinin signalling during post-mowing regeneration of winter wheat (Triticum aestivum L.). Plant Physiology and Biochemistry, 155, 769–779.

    Article  CAS  PubMed  Google Scholar 

  71. Fang, Y., Liao, K., Du, H., Xu, Y., Song, H., Li, X., & Xiong, L. (2015). A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. Journal of Experimental Botany, 66(21), 6803–6817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fang, Y., Xie, K., & Xiong, L. (2014). Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. Journal of Experimental Botany, 65(8), 2119–2135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xie, Q., Frugis, G., Colgan, D., & Chua, N.-H. (2000). Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes & Development, 14(23), 3024–3036.

    Article  CAS  Google Scholar 

  74. Kim, J. H., Woo, H. R., Kim, J., Lim, P. O., Lee, I. C., Choi, S. H., Hwang, D., & Nam, H. G. (2009). Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science, 323(5917), 1053–1057.

    Article  CAS  PubMed  Google Scholar 

  75. Koyama, T., Mitsuda, N., Seki, M., Shinozaki, K., & Ohme-Takagi, M. (2010). TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. The Plant Cell, 22(11), 3574–3588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stief, A., Altmann, S., Hoffmann, K., Pant, B. D., Scheible, W.-R., & Bäurle, I. (2014). Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. The Plant Cell, 26(4), 1792–1807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Reyes, J. L., & Chua, N. H. (2007). ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. The Plant Journal, 49(4), 592–606.

    Article  CAS  PubMed  Google Scholar 

  78. Millar, A. A., Lohe, A., & Wong, G. (2019). Biology and function of miR159 in plants. Plants, 8(8), 255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, Y., Sun, F., Cao, H., Peng, H., Ni, Z., Sun, Q., & Yao, Y. (2012). TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS ONE, 7(11), e48445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li, H., Wang, Y., Wang, Z., Guo, X., Wang, F., Xia, X. J., Zhou, J., Shi, K., Yu, J. Q., & Zhou, Y. H. (2016). Microarray and genetic analysis reveals that csa-miR159b plays a critical role in abscisic acid-mediated heat tolerance in grafted cucumber plants. Plant, Cell & Environment, 39(8), 1790–1804.

    Article  CAS  Google Scholar 

Download references

Funding

Shiraz University

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Salehi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amini, Z., Salehi, H., Chehrazi, M. et al. miRNAs and Their Target Genes Play a Critical Role in Response to Heat Stress in Cynodon dactylon (L.) Pers.. Mol Biotechnol 65, 2004–2017 (2023). https://doi.org/10.1007/s12033-023-00713-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00713-2

Keywords

Navigation