Skip to main content

Advertisement

Log in

Traversing DNA-Protein Interactions Between Mesophilic and Thermophilic Bacteria: Implications from Their Cold Shock Response

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Cold shock proteins (CSPs) are small, acidic proteins which contain a conserved nucleic acid-binding domain. These perform mRNA translation acting as “RNA chaperones” when triggered by low temperatures initiating their cold shock response. CSP- RNA interactions have been predominantly studied. Our focus will be CSP-DNA interaction examination, to analyse the diverse interaction patterns such as electrostatic, hydrogen and hydrophobic bonding in both thermophilic and mesophilic bacteria. The differences in the molecular mechanism of these contrasting bacterial proteins are studied. Computational techniques such as modelling, energy refinement, simulation and docking were operated to obtain data for comparative analysis. The thermostability factors which stabilise a thermophilic bacterium and their effect on their molecular regulation is investigated. Conformational deviation, atomic residual fluctuations, binding affinity, Electrostatic energy and Solvent Accessibility energy were determined during stimulation along with their conformational study. The study revealed that mesophilic bacteria E. coli CSP have higher binding affinity to DNA than thermophilic G. stearothermophilus. This was further evident by low conformation deviation and atomic fluctuations during simulation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

All data generated and studies are available within this manuscriptand its supplementary article.

Code Availability

Not applicable.

Abbreviations

CSP:

Cold shock proteins

ssDNA:

Single-stranded DNA

D1:

(DNA-binding site: residue symbol and position in the sequence)

RMSD:

Root Mean Square Deviation

RMSF:

Root Mean Square Fluctuation

SASA:

Solvent-Accessible Surface Area

References

  1. Graumann, P. L., & Marahiel, M. A. (1999). Cold Shock Response in Bacillus subtilis. Journal of molecular microbiology and biotechnology, 1, 203–209.

    CAS  PubMed  Google Scholar 

  2. Zhou, Z., et al. (2021). A cold shock protein promotes high-temperature microbial growth through binding to diverse RNA species. Cell Discovery, 7, 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Metpally, R. P. R., & Reddy, B. V. B. (2009). Comparative proteome analysis of psychrophilic versus mesophilic bacterial species: Insights into the molecular basis of cold adaptation of proteins. BMC Genomics, 10, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schindler, T., Graumann, P. L., Perl, D., Ma, S., Schmid, F. X., & Marahiel, M. A. (1999). The family of cold shock proteins of Bacillus subtilis: Stability and dynamics in vitro and in vivo. Journal of Biological Chemistry, 274, 3407–3413.

    Article  CAS  PubMed  Google Scholar 

  5. Horn, G., Hofweber, R., Kremer, W., & Kalbitzer, H. R. (2007). Structure and function of bacterial cold shock proteins. Cellular and Molecular Life Sciences, 64, 1584.

    Article  CAS  Google Scholar 

  6. Nakaminami, K., Karlson, D. T., & Imai, R. (2006). Functional conservation of cold shock domains in bacteria and higher plants. Biological Sciences, 103, 10122–10127.

    CAS  Google Scholar 

  7. SupachokSinchaikul, et al. (2002). Proteomic study of cold shock protein in Bacillus stearothermophilus P1: Comparison of temperature downshifts. Proteomics, 2, 1316–1324.

    Article  Google Scholar 

  8. Fang, L. I., & Hou, Y. (1998). Role of the cold-box region in the 5 untranslated region of the cspA mRNA in its transient expression at low temperature in Escherichia coli. Journal of Bacteriology, 180, 90–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oise Berger, F., Morellet, N., & F. Dé Ric Menu, and P. Potier,. (1996). Cold Shock and Cold Acclimation Proteins in the Psychrotrophic Bacterium Arthrobacter globiformis SI55. Journal of bacteriology, 178, 2999–3007.

    Article  Google Scholar 

  10. Mueller, U., Perl, D., Schmid, F. X., & Heinemann, U. (2000). Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein. Journal of Molecular Biology, 297, 975–988.

    Article  CAS  PubMed  Google Scholar 

  11. Schindelin, H., Jiangt, W., Inouyet, M., Heinemann, U., & Kristallographie, F. (1994). Crystal structure of CspA, the major cold shock protein of Escherichia coli. PNAS, 91, 5119–5123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sachs, R., Max, K. E. A., Heinemann, U., & Balbach, J. (2012). RNA single strands bind to a conserved surface of the major cold shock protein in crystals and solution. RNA, 18, 65–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gasteigeretal, E. (1999). Protein analysis tools on the ExPASy server 571 571 From: The proteomics protocols handbook protein identification and analysis tools on the ExPASy server. Methods in Molecular Biology, 112, 531–552.

    Google Scholar 

  14. Chang, K. Y., & Yang, J. R. (2013). Analysis and prediction of highly effective antiviral peptides based on random forests. PLoS ONE, 8, e70166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aziz, M. F., & Caetano-Anollés, G. (2021). Evolution of networks of protein domain organization. Science and Reports, 11, 12075.

    Article  CAS  Google Scholar 

  16. Porebski, B. T., & Buckle, A. M. (2016). Consensus protein design. Protein Engineering, Design and Selection, 29, 245–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Si, J., Zhao, R., & Wu, R. (2015). An overview of the prediction of protein DNA-binding sites. International Journal of Molecular Sciences, 16, 5194–5215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blum, M., et al. (2021). The InterPro protein families and domains database: 20 years on. Nucleic Acids Research, 49, D344–D354.

    Article  CAS  PubMed  Google Scholar 

  19. Waterhouse, A., et al. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 31, 3381–3385.

    Google Scholar 

  20. Ittisoponpisan, S., Islam, S. A., Khanna, T., Alhuzimi, E., David, A., & Sternberg, M. J. E. (2019). Can predicted protein 3d structures provide reliable insights into whether missense variants are disease associated ? Journal of molecular biology, 431, 2197–2212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, S., Li, W., Liu, S., & Xu, J. (2016). RaptorX-Property: A web server for protein structure property prediction. Nucleic Acids Research, 44, W430–W435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zheng, W., Zhang, C., Li, Y., Pearce, R., Bell, E. W., & Zhang, Y. (2021). Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Reports Methods., 1, 100014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, D. E., Chivian, D., & Baker, D. (2004). Protein structure prediction and analysis using the Robetta server. Nucleic Acids Research, 32, W526–W531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. CHRIS COLOVOS and TODD O. YEATES,. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Prorein Science, 2, 1511–1519.

    Article  Google Scholar 

  25. Bowie, J. U., Ltcy, R., & Eisenberg, D. (2014). A method to identify protein sequences that fold into a known three-dimensional stucture. Science, 253, 164–170.

    Article  Google Scholar 

  26. Laskowski, R. A., Antoon, J., Rullmann, C., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR*. Journal of Biomolecular NMR., 8, 477–486.

    Article  CAS  PubMed  Google Scholar 

  27. Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35, W407–W410.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fiser, A., Do, R. K., & Šali, A. (2000). Modeling of loops in protein structures. Protein Science, 9(1753), 1773.

    Google Scholar 

  29. Xu, D., & Zhang, Y. (2011). Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophysical Journal, 101, 2525–2534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pettersen, E. F., et al. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612.

    Article  CAS  PubMed  Google Scholar 

  31. Krüger, D. M., Ahmed, A., & Gohlke, H. (2012). NMSim web server: Integrated approach for normal mode-based geometric simulations of biologically relevant conformational transitions in proteins. Nucleic Acids Research, 40, W310–W316.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ahmed, A. (2011). A normal mode-based geometric simulation approach for exploring biologically relevant conformational transitions in proteins. Journal of Chemical Information and Modeling, 51, 1604–1622.

    Article  CAS  PubMed  Google Scholar 

  33. Martínez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS ONE, 10, e0119264.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bornot, A., Etchebest, C., & de Brevern, A. G. (2011). “Predicting protein flexibility through the prediction of local structures”, Proteins: Structure. Function and Bioinformatics, 79, 839–852.

    Article  CAS  Google Scholar 

  35. Heinig, M., & Frishman, D. (2004). STRIDE: A web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Research, 32, W500–W502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Klose, D. P., Wallace, B. A., & Janes, R. W. (2010). 2Struc: The secondary structure server. Bioinformatics, 26, 2624–2625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schindelin, H., et al. (1993). Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein. Nature, 364, 164–168.

    Article  CAS  PubMed  Google Scholar 

  38. Arnott, S., Campbell-Smith, P. J., & Chandrasekaran, R. (1976). Handbook of Biochemistry and Molecular Biology. Nucleic Acids., 2, 411–422.

    Google Scholar 

  39. Dominguez, C., Boelens, R., & Bonvin, A. M. J. J. (2003). HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society, 125, 1731–1737.

    Article  CAS  PubMed  Google Scholar 

  40. Gabdoulline, R., Eckweiler, D., Kel, A., & Stegmaier, P. (2012). 3DTF: A web server for predicting transcription factor PWMs using 3D structure-based energy calculations. Nucleic Acids Research., 40, W180–W185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Badaczewska-Dawid, A. E., Nithin, C., Wroblewski, K., Kurcinski, M., & Kmiecik, S. (2022). MAPIYA contact map server for identification and visualization of molecular interactions in proteins and biological complexes. Nucleic Acids Research, 50, W474–W482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fraczkiewicz, R., & Braun, W. (1998). Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. Journal of Computational Chemistry, 19, 319–333.

    Article  CAS  Google Scholar 

  43. Tokmakov, A. A., Kurotani, A., & Sato, K. I. (2021). Protein pI and Intracellular Localization. Frontiers in Molecular Biosciences, 8, 775736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Enany, S. (2014). Structural and functional analysis of hypothetical and conserved proteins of Clostridium tetani. Journal of Infection and Public Health, 7, 296–307.

    Article  PubMed  Google Scholar 

  45. Aier, I., Varadwaj, P. K., & Raj, U. (2016). Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Scientific Reports, 6, 34984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bhattacharya, S., Dhar, S., Banerjee, A., & Ray, S. (2019). Structural, functional, and evolutionary analysis of late embryogenesis abundant proteins (LEA) in Triticum aestivum: a detailed molecular level biochemistry using in silico approach. Computational Biology and Chemistry, 82, 9–24.

    Article  CAS  PubMed  Google Scholar 

  47. Yu, B., Pettitt, B. M., & Iwahara, J. (2020). Dynamics of ionic interactions at protein-nucleic acid interfaces. Accounts of Chemical Research, 53, 1802–1810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tolstorukov, M. Y., Jernigan, R. L., & Zhurkin, V. B. (2004). Protein-DNA hydrophobic recognition in the minor groove is facilitated by sugar switching. Journal of Molecular Biology, 337, 65–76.

    Article  CAS  PubMed  Google Scholar 

  49. Ohlendorf, D. H., & Matthew, J. B. (1985). ELECTROSTATICS AND FLEXIBILITY IN PROTEIN-DNA INTERACTIONS. Advances in Biophysics, 20, 137–151.

    Article  CAS  PubMed  Google Scholar 

  50. Zhou, H. X., & Pang, X. (2018). Electrostatic interactions in protein structure, folding, binding, and condensation. Chemical Reviews, 118, 1691–1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Silverstein, T. P. (1998). The real reason why oil and water don’t mix. Journal of Chemical Education, 75, 116.

    Article  CAS  Google Scholar 

  52. Harris, R. C., & Pettitt, B. M. (2016). Reconciling the understanding of “hydrophobicity” with physics-based models of proteins. Journal of Physics: Condensed Matter, 28, 083003.

    PubMed  Google Scholar 

  53. Tanford, C. (1973). The hydrophobic effect: Formation of micelles and biological membranes (p. 58). Wiley.

    Google Scholar 

  54. Perrot, Pierre (1998), “A to Z of Thermodynamics.” Oxford University Press. ISBN 0–19–856552–6.

  55. Halliday, David; Resnick, Robert (1988), “Fundamentals of Physics, Extended 3rd ed.” Wiley. ISBN 0–471–81995–6.

  56. Wan, S., Bhati, A. P., Zasada, S. J., & P. v. Coveney,. (2020). Rapid, accurate, precise and reproducible ligand–protein binding free energy prediction. Interface Focus, 10, 20200007.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mukherjee, S., & Bahadur, R. P. (2018). An account of solvent accessibility in protein-RNA recognition. Scientific Reports, 8, 10546.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Durham, E., Dorr, B., Woetzel, N., Staritzbichler, R., & Meiler, J. (2009). Solvent accessible surface area approximations for rapid and accurate protein structure prediction. Journal of Molecular Modeling, 15, 1093–1108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Eswar, N., Ramakrishnan, C., & Srinivasan, N. (2003). Stranded in isolation: Structural role of isolated extended strands in proteins. Protein Engineering, 16, 331–339.

    Article  CAS  PubMed  Google Scholar 

  60. Receveur-Bréchot, V., & Durand, D. (2012). How random are intrinsically disordered proteins? A small angle scattering perspective. Current Protein and Peptide Science, 13, 55–75.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank, Amity Institute of Biotechnology, Amity University, Kolkata, India, for their cooperation.

Funding

No funding support was received during this research work.

Author information

Authors and Affiliations

Authors

Contributions

AR and SR conceived of the presented idea. AR, did the calculation part. SR helped to select databases, softwares and webservers required for this study. Main backbone manuscript was written by AR. Tables, Figures were constructed by AR with the help of SR. Some portion of the result and discussion portion was specifically oriented by AR and SR. Overall Guidance and design were given by SR.

Corresponding author

Correspondence to Sujay Ray.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 212 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A., Ray, S. Traversing DNA-Protein Interactions Between Mesophilic and Thermophilic Bacteria: Implications from Their Cold Shock Response. Mol Biotechnol 66, 824–844 (2024). https://doi.org/10.1007/s12033-023-00711-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00711-4

Keywords

Navigation