Skip to main content
Log in

The Relationship Between the Cross-Linker on Chitosan-Coated Magnetic Nanoparticles and the Properties of Immobilized Papain

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The immobilized enzymes' properties can be affected by cross-linkers on the surface of supports. To study how cross-linkers alter enzymes function, chitosan-coated magnetic nanoparticles (CMNPs) with immobilized papain were prepared using glutaraldehyde and or genipin, and then, the properties of the nanoparticles and the immobilized enzymes were assessed. The Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR), and X-Ray Diffraction (XRD) results showed that the CMNPs were prepared and papain molecules were immobilized on CMNPs by glutaraldehyde (CMNP-Glu-Papain) or by genipin (CMNP-Gen-Papain). Also, the results associated with enzymes activity indicated that the immobilization by glutaraldehyde and genipin increased the pH optimum of papain from 7 to 7.5 and 9, respectively. The kinetic results indicated that the immobilization by genipin slightly affects the enzyme affinity to the substrate. The stability results showed that CMNP-Gen-Papain has more thermal stability than CMNP-Glu-Papain and papain immobilization on CMNPs by genipin leads to stabilization of the enzyme in the presence of polar solvents, probably due to the more hydroxyl groups on CMNPs activated by genipin. In conclusion, this study suggests that there is a relationship between the types of cross-linker on the surface of supports, and the mechanism of action, kinetic parameters, and the stability of immobilized papain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data can be available upon request.

Abbreviations

CMNP:

Chitosan-coated Magnetic Nanoparticle

CMNP-Glu:

CMNP activated by glutaraldehyde

CMNP-Gen:

CMNP activated by genipin

CMNP-Glu-Papain:

CMNP with immobilized papain using glutaraldehyde as cross-linker

CMNP-Gen-Papain:

CMNP with immobilized papain using genipin as cross-linker

FTIR:

Fourier Transform Infrared

MNP:

Magnetic Nanoparticle

SEM:

Scanning Electron Microscope

XRD:

X-ray diffraction

References

  1. Dobson, J. (2006). Magnetic nanoparticles for drug delivery. Drug development research, 67(1), 55–60.

    Article  CAS  Google Scholar 

  2. Bilal, M., Zhao, Y., Rasheed, T., & Iqbal, H. M. (2018). Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. International Journal of Biological Macromolecules, 120, 2530–2544.

    Article  CAS  PubMed  Google Scholar 

  3. Zarandona, I., Correia, D. M., Moreira, J., Costa, C. M., Lanceros-Mendez, S., Guerrero, P., & de la Caba, K. (2022). Magnetically responsive chitosan-pectin films incorporating Fe3O4 nanoparticles with enhanced antimicrobial activity. International Journal of Biological Macromolecules, 227, 1070–1077.

    Article  PubMed  Google Scholar 

  4. Taghizadeh, S.-M., Ghoshoon, M. B., Berenjian, A., Ghasemi, Y., Dehshahri, A., & Ebrahiminezhad, A. (2021). Impacts of Magnetic Immobilization on the recombinant proteins structure produced in pichia pastoris system. Molecular Biotechnology, 63(1), 80–89.

    Article  CAS  PubMed  Google Scholar 

  5. Ali, A., Shah, T., Ullah, R., Zhou, P., Guo, M., Ovais, M., Tan, Z., & Rui, Y. (2021). Review on recent progress in magnetic nanoparticles: Synthesis, characterization, and diverse applications. Frontiers in Chemistry, 9, 629054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Malhotra, N., Lee, J.-S., Liman, R. A. D., Ruallo, J. M. S., Villaflores, O. B., Ger, T.-R., & Hsiao, C.-D. (2020). Potential toxicity of iron oxide magnetic nanoparticles: A review. Molecules, 25(14), 3159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yamaura, M., Camilo, R., Sampaio, L., Macedo, M., Nakamura, M., & Toma, H. (2004). Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite. Journal of Magnetism and Magnetic Materials, 279(2–3), 210–217.

    Article  CAS  Google Scholar 

  8. Zhao, G., Wen, T., Yang, X., Yang, S., Liao, J., Hu, J., Shao, D., & Wang, X. (2012). Preconcentration of U (VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Transactions, 41(20), 6182–6188.

    Article  CAS  PubMed  Google Scholar 

  9. Zong, P., Wang, S., Zhao, Y., Wang, H., Pan, H., & He, C. (2013). Synthesis and application of magnetic graphene/iron oxides composite for the removal of U (VI) from aqueous solutions. Chemical Engineering Journal, 220, 45–52.

    Article  CAS  Google Scholar 

  10. Zhang, Y., Kohler, N., & Zhang, M. (2002). Synthesis and application of magnetic graphene/iron oxides composite for the removal of U (VI) from aqueous solutions. Biomaterials, 23, 1553–1561.

    Article  CAS  PubMed  Google Scholar 

  11. Lacava, L., Lacava, Z., Da Silva, M., Silva, O., Chaves, S., Azevedo, R. B. D., Pelegrini, F., Gansau, C., Buske, N., & Sabolovic, D. (2001). Magnetic resonance of a dextran-coated magnetic fluid intravenously administered in mice. Biophysical Journal, 80(5), 2483–2486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shaumbwa, V. R., Liu, D., Archer, B., Li, J., & Su, F. (2021). Preparation and application of magnetic chitosan in environmental remediation and other fields: A review. Journal of Applied Polymer Science, 138(42), 51241.

    Article  CAS  Google Scholar 

  13. Aslani, E., Abri, A., & Pazhang, M. (2018). Immobilization of trypsin onto Fe3O4@SiO2 -NH2 and study of its activity and stability. Colloids and Surfaces. B, Biointerfaces, 170, 553–562.

    Article  CAS  PubMed  Google Scholar 

  14. Datta, S., Christena, L. R., & Rajaram, Y. R. S. (2013). Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 3(1), 1–9.

    Article  PubMed  Google Scholar 

  15. Verma, M. L., Dhanya, B. S., Rani, V., Thakur, M., Jeslin, J., & Kushwaha, R. (2020). Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications. International Journal of Biological Macromolecules, 154, 390–412.

    Article  CAS  PubMed  Google Scholar 

  16. Sundar, S., Kundu, J., & Kundu, S. C. (2010). Biopolymeric nanoparticles. Science and Technology of Advanced Materials, 11(1), 014104.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dhavale, R. P., Dhavale, R., Sahoo, S., Kollu, P., Jadhav, S., Patil, P., Dongale, T., Chougale, A., & Patil, P. (2021). Chitosan coated magnetic nanoparticles as carriers of anticancer drug Telmisartan: PH-responsive controlled drug release and cytotoxicity studies. Journal of Physics and Chemistry of Solids, 148, 109749.

    Article  CAS  Google Scholar 

  18. Aranaz, I., Mengíbar, M., Harris, R., Paños, I., Miralles, B., Acosta, N., Galed, G., & Heras, Á. (2009). Functional characterization of chitin and chitosan. Current Chemical Biology, 3(2), 203–230.

    CAS  Google Scholar 

  19. Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603–632.

    Article  CAS  Google Scholar 

  20. Krajewska, B. (2004). Application of chitin-and chitosan-based materials for enzyme immobilizations: A review. Enzyme and Microbial Technology, 35(2–3), 126–139.

    Article  CAS  Google Scholar 

  21. Kim, E. H., Ahn, Y., & Lee, H. S. (2007). Biomedical applications of superparamagnetic iron oxide nanoparticles encapsulated within chitosan. Journal of Alloys and Compounds, 434, 633–636.

    Article  Google Scholar 

  22. Sahoo, B., Sahu, S. K., Bhattacharya, D., Dhara, D., & Pramanik, P. (2013). A novel approach for efficient immobilization and stabilization of papain on magnetic gold nanocomposites. Colloids and Surfaces B: Biointerfaces, 101, 280–289.

    Article  CAS  PubMed  Google Scholar 

  23. Yanat, M., & Schroën, K. (2021). Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. Reactive and Functional Polymers, 161, 104849.

    Article  CAS  Google Scholar 

  24. Elango, J., Bu, Y., Bin, B., Geevaretnam, J., Robinson, J. S., & Wu, W. (2017). Effect of chemical and biological cross-linkers on mechanical and functional properties of shark catfish skin collagen films. Food Bioscience, 17, 42–51.

    Article  CAS  Google Scholar 

  25. Reddy, N., Reddy, R., & Jiang, Q. (2015). Crosslinking biopolymers for biomedical applications. Trends in Biotechnology, 33(6), 362–369.

    Article  CAS  PubMed  Google Scholar 

  26. Russell, A. (1994). Glutaraldehyde: Current status and uses. Infection Control & Hospital Epidemiology, 15(11), 724–733.

    Article  CAS  Google Scholar 

  27. Zhang, X., Do, M. D., Casey, P., Sulistio, A., Qiao, G. G., Lundin, L., Lillford, P., & Kosaraju, S. (2010). Chemical modification of gelatin by a natural phenolic cross-linker, tannic acid. Journal of Agricultural and Food Chemistry, 58(11), 6809–6815.

    Article  CAS  PubMed  Google Scholar 

  28. Gao, L., Gan, H., Meng, Z., Gu, R., Wu, Z., Zhang, L., Zhu, X., Sun, W., Li, J., Zheng, Y., & Dou, G. (2014). Effects of genipin cross-linking of chitosan hydrogels on cellular adhesion and viability. Colloids and Surfaces. B, Biointerfaces, 117, 398–405.

    Article  CAS  PubMed  Google Scholar 

  29. Klein, M. P., Hackenhaar, C. R., Lorenzoni, A. S. G., Rodrigues, R. C., Costa, T. M. H., Ninow, J. L., & Hertz, P. F. (2016). Chitosan crosslinked with genipin as support matrix for application in food process: Support characterization and beta-D-galactosidase immobilization. Carbohydrate Polymers., 137, 184–190.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, C., Chen, P. X., Xiao, Q., Yang, Q. M., Weng, H. F., Zhang, Y. H., & Xiao, A. F. (2021). Chitosan activated with genipin: A nontoxic natural carrier for tannase immobilization and its application in enhancing biological activities of tea extract. Marine Drugs, 19(3), 166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Flores, E. E. E., Cardoso, F. D., Siqueira, L. B., Ricardi, N. C., Costa, T. H., Rodrigues, R. C., Klein, M. P., & Hertz, P. F. (2019). Influence of reaction parameters in the polymerization between genipin and chitosan for enzyme immobilization. Process Biochemistry, 84, 73–80.

    Article  CAS  Google Scholar 

  32. Lima, P. C., Gazoni, I., de Carvalho, A. M. G., Bresolin, D., Cavalheiro, D., de Oliveira, D., & Rigo, E. (2021). beta-galactosidase from Kluyveromyces lactis in genipin-activated chitosan: An investigation on immobilization, stability, and application in diluted UHT milk. Food Chemistry, 349, 129050.

    Article  CAS  PubMed  Google Scholar 

  33. Fujikawa, S., Fukui, Y., Koga, K., & Kumada, J.-I. (1987). Brilliant skyblue pigment formation from gardenia fruits. Journal of Fermentation Technology, 65(4), 419–424.

    Article  CAS  Google Scholar 

  34. Liu, Y., Zhou, H., Wang, L., & Wang, S. (2016). Stability and catalytic properties of lipase immobilized on chitosan encapsulated magnetic nanoparticles cross-linked with genipin and glutaraldehyde. Journal of Chemical Technology & Biotechnology, 91(5), 1359–1367.

    Article  CAS  Google Scholar 

  35. Fernández-Lucas, J., Castañeda, D., & Hormigo, D. (2017). New trends for a classical enzyme: Papain, a biotechnological success story in the food industry. Trends in Food Science & Technology, 68, 91–101.

    Article  Google Scholar 

  36. Tacias-Pascacio, V. G., Morellon-Sterling, R., Castaneda-Valbuena, D., Berenguer-Murcia, A., Kamli, M. R., Tavano, O., & Fernandez-Lafuente, R. (2021). Immobilization of papain: A review. International Journal of Biological Macromolecules, 188, 94–113.

    Article  CAS  PubMed  Google Scholar 

  37. Dhivya, R., Rashma, R. S., Vinothini, B., & Pavithra, R. (2018). Extraction and purification of papain enzyme from carica papaya for wound debridement. International Journal of Pure and Applied Mathematics, 119(15), 1265–1274.

    Google Scholar 

  38. Gaertner, H. F., Ferjancic, A., & Puigserver, A. J. (1990). Papain-catalyzed peptide synthesis and oligomerization of amino acid amides in organic solvents. Biocatalysis, 3(3), 197–205.

    Article  CAS  Google Scholar 

  39. Guo, J.-T., Xiang, Y., Guan, Z., & He, Y.-H. (2016). Papain-catalyzed aldol reaction for the synthesis of trifluoromethyl carbinol derivatives. Journal of Molecular Catalysis B: Enzymatic, 131, 55–64.

    Article  CAS  Google Scholar 

  40. Hu, W., Guan, Z., Deng, X., & He, Y.-H. (2012). Enzyme catalytic promiscuity: The papain-catalyzed Knoevenagel reaction. Biochimie, 94(3), 656–661.

    Article  CAS  PubMed  Google Scholar 

  41. Soares, A., Goncalves, L. M. O., Ferreira, R. D. S., de Souza, J. M., Fangueiro, R., Alves, M. M. M., Carvalho, F. A. A., Mendes, A. N., & Cantanhede, W. (2020). Immobilization of papain enzyme on a hybrid support containing zinc oxide nanoparticles and chitosan for clinical applications. Carbohydrate Polymers, 243, 116498.

    Article  CAS  PubMed  Google Scholar 

  42. Mohammadi, M., Najavand, S., & Pazhang, M. (2019). Immobilization of endoglucanase Cel9A on chitosan nanoparticles leads to its stabilization against organic solvents: the use of polyols to improve the stability. 3 Biotech, 9(7), 269.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Najavand, S., Habibnejad, M., Amani-Ghadim, A. R., Rahimizadeh, P., & Pazhang, M. (2020). Optimized immobilization of endoglucanase Cel9A onto glutaraldehyde activated chitosan nanoparticles by response surface methodology: The study of kinetic behaviors. Biotechnology Progress, 36(3), e2960.

    Article  CAS  PubMed  Google Scholar 

  44. Muzzarelli, R. A. (2009). Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydrate Polymers, 77(1), 1–9.

    Article  CAS  Google Scholar 

  45. Homaei, A. (2015). Enhanced activity and stability of papain immobilized on CNBr-activated sepharose. International Journal of Biological Macromolecules, 75, 373–377.

    Article  CAS  PubMed  Google Scholar 

  46. Liang, Y. Y., & Zhang, L. M. (2007). Bioconjugation of papain on superparamagnetic nanoparticles decorated with carboxymethylated chitosan. Biomacromolecules, 8(5), 1480–1486.

    Article  CAS  PubMed  Google Scholar 

  47. Mirzaei, F., Valizadeh, H., & Pazhang, M. (2022). Immobilization of papain on nitrogen-doped graphene quantum dots improves the enzymatic properties and makes it a biosensor for cystatin C. Process Biochemistry, 118, 307–316.

    Article  CAS  Google Scholar 

  48. Song, X., & Gao, L. (2007). Fabrication of bifunctional titania/silica-coated magnetic spheres and their photocatalytic activities. Journal of the American Ceramic Society, 90(12), 4015–4019.

    CAS  Google Scholar 

  49. Ma, H.-F., Meng, G., Cui, B.-K., Si, J., & Dai, Y.-C. (2018). Chitosan crosslinked with genipin as supporting matrix for biodegradation of synthetic dyes: Laccase immobilization and characterization. Chemical Engineering Research and Design, 132, 664–676.

    Article  CAS  Google Scholar 

  50. Pazhang, M., Khajeh, K., Ranjbar, B., & Hosseinkhani, S. (2006). Effects of water-miscible solvents and polyhydroxy compounds on the structure and enzymatic activity of thermolysin. Journal of Biotechnology, 127(1), 45–53.

    Article  CAS  PubMed  Google Scholar 

  51. Pazhang, M., Mehrnejad, F., Pazhang, Y., Falahati, H., & Chaparzadeh, N. (2016). Effect of sorbitol and glycerol on the stability of trypsin and difference between their stabilization effects in the various solvents. Biotechnology and Applied Biochemistry, 63(2), 206–213.

    Article  CAS  PubMed  Google Scholar 

  52. Kruger, N. J. (2009). The Bradford method for protein quantitation. The Protein Protocols Handbook (pp. 17–24). Humana Press.

    Book  Google Scholar 

  53. Palmer, T., & Bonner, P. L. (2007). Enzymes: Biochemistry, biotechnology, clinical chemistry. Elsevier.

    Book  Google Scholar 

  54. Yang, T., Shen, C., Li, Z., Zhang, H., Xiao, C., Chen, S., Xu, Z., Shi, D., Li, J., & Gao, H. (2005). Highly ordered self-assembly with large area of Fe3O4 nanoparticles and the magnetic properties. The Journal of Physical Chemistry B, 109(49), 23233–23236.

    Article  CAS  PubMed  Google Scholar 

  55. Rezayan, A. H., Mousavi, M., Kheirjou, S., Amoabediny, G., Ardestani, M. S., & Mohammadnejad, J. (2016). Monodisperse magnetite (Fe3O4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method. Journal of Magnetism and Magnetic Materials, 420, 210–217.

    Article  CAS  Google Scholar 

  56. Lambert, J. B., Shurvell, H. F., Lightner, D. A., & Cooks, R. G. (1987). Introduction to organic spectroscopy. Macmillan Publishing Company.

    Google Scholar 

  57. Movellan, K. T., Wegstroth, M., Overkamp, K., Leonov, A., Becker, S., & Andreas, L. B. (2020). Imidazole-Imidazole hydrogen bonding in the pH-sensing histidine side chains of influenza A M2. Journal of American Chemical Society, 142(6), 2704–2708.

    Article  CAS  Google Scholar 

  58. Gul, S., Hussain, S., Thomas, M. P., Resmini, M., Verma, C. S., Thomas, E. W., & Brocklehurst, K. (2008). Generation of nucleophilic character in the Cys25/His159 ion pair of papain involves Trp177 but not Asp158. Biochemistry, 47(7), 2025–2035.

    Article  CAS  PubMed  Google Scholar 

  59. Cooney, M. J. (2017). Kinetic Measurements for Enzyme Immobilization. In S. Minteer (Ed.), Enzyme Stabilization and Immobilization. Methods in Molecular Biology (pp. 215–232). Humana Press.

    Chapter  Google Scholar 

  60. Bhabha, G., Lee, J., Ekiert, D. C., Gam, J., Wilson, I. A., Dyson, H. J., Benkovic, S. J., & Wright, P. E. (2011). A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science, 332(6026), 234–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Richard, J. P. (2019). Protein flexibility and stiffness enable efficient enzymatic catalysis. Journal of the American Chemical Society, 141(8), 3320–3331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Antony, N., Balachandran, S., & Mohanan, P. (2016). Immobilization of diastase α-amylase on nano zinc oxide. Food chemistry, 211, 624–630.

    Article  CAS  PubMed  Google Scholar 

  63. Liu, Y., Cai, Z., Sheng, L., Ma, M., Xu, Q., & Jin, Y. (2019). Structure-property of crosslinked chitosan/silica composite films modified by genipin and glutaraldehyde under alkaline conditions. Carbohydrate polymers, 215, 348–357.

    Article  CAS  PubMed  Google Scholar 

  64. Hillberg, A. L., Holmes, C. A., & Tabrizian, M. (2009). Effect of genipin cross-linking on the cellular adhesion properties of layer-by-layer assembled polyelectrolyte films. Biomaterials, 30(27), 4463–4470.

    Article  CAS  PubMed  Google Scholar 

  65. Gabrielyan, L., Hovhannisyan, A., Gevorgyan, V., Ananyan, M., & Trchounian, A. (2019). Antibacterial effects of iron oxide (Fe3O4) nanoparticles: Distinguishing concentration-dependent effects with different bacterial cells growth and membrane-associated mechanisms. Applied Microbiology and Biotechnology, 103(6), 2773–2782.

    Article  CAS  PubMed  Google Scholar 

  66. Ramundo, J., & Gray, M. (2008). Enzymatic wound debridement. Journal of Wound Ostomy & Continence Nursing, 35(3), 273–280.

    Article  Google Scholar 

  67. Pazhang, M., Mardi, N., Mehrnejad, F., & Chaparzadeh, N. (2018). The combinatorial effects of osmolytes and alcohols on the stability of pyrazinamidase: Methanol affects the enzyme stability through hydrophobic interactions and hydrogen bonds. Internatinal Journal of Biological Macromolecules, 108, 1339–1347.

    Article  CAS  Google Scholar 

  68. Asghari, S. M., Pazhang, M., Ehtesham, S., Karbalaei-Heidari, H. R., Taghdir, M., Sadeghizadeh, M., Naderi-Manesh, H., & Khajeh, K. (2010). Remarkable improvements of a neutral protease activity and stability share the same structural origins. Protein Engineering, Design & Selection, 23(8), 599–606.

    Article  CAS  Google Scholar 

  69. Mirzaeinia, S., Pazhang, M., Imani, M., Chaparzadeh, N., & Amani-Ghadim, A. R. (2020). Improving the stability of uricase from Aspergillus flavus by osmolytes: Use of response surface methodology for optimization of the enzyme stability. Process Biochemistry, 94, 86–98.

    Article  CAS  Google Scholar 

  70. Stepankova, V., Damborsky, J., & Chaloupkova, R. (2013). Organic co-solvents affect activity, stability and enantioselectivity of haloalkane dehalogenases. Biotechnology Journal, 8(6), 719–729.

    Article  CAS  PubMed  Google Scholar 

  71. Sandaka, B. P., Kumar, J., & Melo, J. S. (2022). Mitigation of methanol inactivation of lipases by reaction medium engineering with glycine betaine for enzymatic biodiesel synthesis. Fuel, 313, 122637.

    Article  CAS  Google Scholar 

  72. Sujith, K. (2022). Effect of methanol as an amphiphile on water structuring around a hydrate forming gas molecule: Insights from molecular dynamics simulations. Journal of Molecular Liquids, 361, 119628.

    Article  CAS  Google Scholar 

  73. Sadeghi-Kaji, S., Shareghi, B., Saboury, A. A., & Farhadian, S. (2020). Investigating the interaction of porcine pancreatic elastase and propanol: A spectroscopy and molecular simulation study. International Journal of Biological Macromolecules, 146, 687–691.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the research council of Azarbaijan Shahid Madani University for the financial support during the course of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Pazhang.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4773 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostaraddi, S., Pazhang, M., Ebadi-Nahari, M. et al. The Relationship Between the Cross-Linker on Chitosan-Coated Magnetic Nanoparticles and the Properties of Immobilized Papain. Mol Biotechnol 65, 1809–1823 (2023). https://doi.org/10.1007/s12033-023-00687-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00687-1

Keywords

Navigation