Skip to main content

Advertisement

Log in

Docking and Molecular Dynamics Simulation Revealed the Potential Inhibitory Activity of Amygdalin in Triple-Negative Breast Cancer Therapeutics Targeting the BRCT Domain of BARD1 Receptor

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Triple-negative breast cancer (TNBC), is diagnosed as the most lethal molecular subtype of breast cancer (BC) preceded by an extremely poor prognosis. For enabling effective TNBC therapy, the identification of novel druggable biomarkers is an earnest need. Multigene paneling and genomewide association studies identify multiple genes with high-to-moderate penetrance in TNBC. Modern computer-aided drug designing techniques, thus aim to design more cost-effective natural small molecule inhibitors for TNBC prevention and diagnosis. Here Amygdalin, a natural glycosidic inhibitor is docked and simulated against three such high-to-moderate penetrance genes identified in TNBC, BARD1, RAD51, and PALB2. The preliminary result of the analysis, reports a highest, intermediate, and least binding energy score of − 6.69 kcal/mol, − 5.09 kcal/mol, and − 4.89 kcal/mol in BARD1, RAD51, and PALB2, respectively. The best-docked protein–ligand complex (BARD1-Amygdalin) was then simulated and compared with an approved drug for TNBC treatment, Olaparib. A comparable binding energy score of − 8.53 kcal/mol was obtained by docking olaparib with BARD1. A 100 ns MD simulation revealed, Amygdalin forms more H-bonds, providing more stable and compact protein–ligand complex with BARD1 than compared to Olaparib. The result was also supported by calculation of solvent accessible surface area and analysis of radius of gyration. Thus, our findings suggest that role of Amygdalin can further be studied in details for TNBC therapeutics, which was found to target the BRCT domain of the BARD1 receptor in stable manner. Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary. Name and affiliations are correctly identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Romano, J. D., & Tatonetti, N. P. (2019). Informatics and computational methods in natural product drug discovery: A review and perspectives. Frontiers in genetics, 10, 368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mitra, S., & Dash, R. (2018). Natural products for the management and prevention of breast cancer. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2018/8324696

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ashburn, T. T., & Thor, K. B. (2004). Drug repositioning: Identifying and developing new uses for existing drugs. Nature reviews Drug discovery, 3(8), 673–683.

    Article  CAS  PubMed  Google Scholar 

  4. Ke, Y. Y., Singh, V. K., Coumar, M. S., Hsu, Y. C., Wang, W. C., Song, J. S., Chen, C. H., Lin, W. H., Wu, S. H., Hsu, J. T., & Shih, C. (2015). Homology modeling of DFG-in FMS-like tyrosine kinase 3 (FLT3) and structure-based virtual screening for inhibitor identification. Scientific Reports, 5(1), 1–12.

    Article  Google Scholar 

  5. Schaduangrat, N., Lampa, S., Simeon, S., Gleeson, M. P., Spjuth, O., & Nantasenamat, C. (2020). Towards reproducible computational drug discovery. Journal of Cheminformatics, 12, 1–30.

    Article  Google Scholar 

  6. Pagadala, N. S., Syed, K., & Tuszynski, J. (2017). Software for molecular docking: A review. Biophysical reviews, 9(2), 91–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Salmaso, V., & Moro, S. (2018). Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: an overview. Frontiers Pharmacology. https://doi.org/10.3389/fphar.2018.00923

    Article  Google Scholar 

  8. Dutta, S., Kharkar, P. S., Sahu, N. U., & Khanna, A. (2017). Molecular docking prediction and in vitro studies elucidate anti-cancer activity of phytoestrogens. Life sciences, 185, 73–84.

    Article  CAS  PubMed  Google Scholar 

  9. Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. Molecules, 20(7), 13384–13421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi, J., Chen, Q., Xu, M., Xia, Q., Zheng, T., Teng, J., Li, M., & Fan, L. (2019). Recent updates and future perspectives about amygdalin as a potential anticancer agent: a review. Cancer Medicine, 8(6), 3004–3011.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Erkan ÖN, GHOSH A, GUNGOR M, YALIN AE, YALIN S. (2021) “Investigation of molecular modeling and molecular dynamics simulation In BRCA-1 And BRCA-2 genes of amygdalin ligand.”

  12. Jiagang, D., Li, C., Wang, H., Hao, E., Du, Z., Bao, C., Lv, J., & Wang, Y. (2011). Amygdalin mediates relieved atherosclerosis in apolipoprotein E deficient mice through the induction of regulatory T cells. Biochemical and Biophysical Research Communications, 411(3), 523–529.

    Article  PubMed  Google Scholar 

  13. Orlikova, B., Legrand, N., Panning, J., Dicato, M., & Diederich, M. (2014). Anti-inflammatory and anticancer drugs from nature. Advances in Nutrition and Cancer. https://doi.org/10.1007/978-3-642-38007-5_8

    Article  Google Scholar 

  14. Lea, M. A., & Koch, M. R. (1979). Effects of cyanate, thiocyanate, and amygdalin on metabolite uptake in normal and neoplastic tissues of the rat. Journal of the National Cancer Institute, 63(5), 1279–1283.

    CAS  PubMed  Google Scholar 

  15. Qian, L., Xie, B., Wang, Y., & Qian, J. (2015). Amygdalin-mediated inhibition of non-small cell lung cancer cell invasion in vitro. International journal of clinical and experimental pathology, 8(5), 5363.

    PubMed  PubMed Central  Google Scholar 

  16. Makarević, J., Rutz, J., Juengel, E., Kaulfuss, S., Reiter, M., Tsaur, I., Bartsch, G., Haferkamp, A., & Blaheta, R. A. (2014). Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyclin A and cdk2. PLoS ONE, 9(8), e105590.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Abboud, M. M., Al Awaida, W., Alkhateeb, H. H., & Abu-Ayyad, A. N. (2019). Antitumor action of amygdalin on human breast cancer cells by selective sensitization to oxidative stress. Nutrition and Cancer., 71(3), 483–490.

    Article  CAS  PubMed  Google Scholar 

  18. Mani, J., Neuschäfer, J., Resch, C., Rutz, J., Maxeiner, S., Roos, F., Chun, F. K., Juengel, E., & Blaheta, R. A. (2020). Amygdalin modulates prostate cancer cell adhesion and migration in vitro. Nutrition and Cancer, 72(3), 528–537.

    Article  CAS  PubMed  Google Scholar 

  19. Song, Z., & Xiaohong, Xu. (2014). Advanced research on anti-tumor effects of amygdalin. Journal of Cancer Research and Therapeutics, 10(5), 3.

    Article  PubMed  Google Scholar 

  20. Zhao, B., Xu, Y., Zhao, Y., Shen, S., & Sun, Q. (2020). Identification of potential key genes associated with the pathogenesis, metastasis, and prognosis of triple-negative breast cancer on the basis of integrated bioinformatics analysis. Frontiers in Oncology. https://doi.org/10.3389/fonc.2020.00856

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zagami, P., & Carey, L. A. (2022). Triple negative breast cancer: Pitfalls and progress. NPJ Breast Cancer, 8(1), 1–10.

    Article  Google Scholar 

  22. Lehmann, B. D., Bauer, J. A., Chen, X., Sanders, M. E., Chakravarthy, A. B., Shyr, Y., & Pietenpol, J. A. (2011). Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. The Journal of Clinical Investigation, 121(7), 2750–2767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Montagna, E., Maisonneuve, P., Rotmensz, N., Cancello, G., Iorfida, M., Balduzzi, A., Galimberti, V., Veronesi, P., Luini, A., Pruneri, G., & Bottiglieri, L. (2013). Heterogeneity of triple-negative breast cancer: histologic subtyping to inform the outcome. Clinical Breast Cancer, 13(1), 31–39.

    Article  PubMed  Google Scholar 

  24. Ellsworth, D. L., Turner, C. E., & Ellsworth, R. E. (2019). A review of the hereditary component of triple negative breast cancer: High-and moderate-penetrance breast cancer genes, low-penetrance loci, and the role of nontraditional genetic elements. Journal of Oncology. https://doi.org/10.1155/2019/4382606

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rebbeck, T. R., Mitra, N., Wan, F., Sinilnikova, O. M., Healey, S., McGuffog, L., Mazoyer, S., Chenevix-Trench, G., Easton, D. F., Antoniou, A. C., & Nathanson, K. L. (2015). Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA, 313(13), 1347–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brigham & Women’s Hospital & Harvard Medical School Chin Lynda 9 11 Park Peter J. 12 Kucherlapati Raju 13, et al. (2012) “Comprehensive molecular portraits of human breast tumours”. Nature 490(7418): 61–70.

  27. Borri, Filippo and Annarita Granaglia 2021 Pathology of triple negative breast cancer, Seminars in cancer biology, Academic Press

  28. Fornier, M., & Fumoleau, P. (2012). The paradox of triple negative breast cancer: Novel approaches to treatment. The Breast Journal, 18(1), 41–51.

    Article  PubMed  Google Scholar 

  29. Wahba, H. A., & El-Hadaad, H. A. (2015). Current approaches in treatment of triple-negative breast cancer. Cancer Biology & Medicine, 12(2), 106.

    CAS  Google Scholar 

  30. Abbasi, B. A., Iqbal, J., Mahmood, T., Khalil, A. T., Ali, B., Kanwal, S., Shah, S. A., & Ahmad, R. (2018). Role of dietary phytochemicals in modulation of miRNA expression: Natural swords combating breast cancer. Asian Pacific Journal of Tropical Medicine, 11(9), 501.

    Article  CAS  Google Scholar 

  31. Rahman, N., Seal, S., Thompson, D., Kelly, P., Renwick, A., Elliott, A., Reid, S., Spanova, K., Barfoot, R., Chagtai, T., & Jayatilake, H. (2007). PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nature Genetics, 39(2), 165–167.

    Article  CAS  PubMed  Google Scholar 

  32. Han, M. R., Zheng, W., Cai, Q., Gao, Y. T., Zheng, Y., Bolla, M. K., Michailidou, K., Dennis, J., Wang, Q., Dunning, A. M., & Brennan, P. (2017). Evaluating genetic variants associated with breast cancer risk in high and moderate-penetrance genes in Asians. Carcinogenesis, 38(5), 511–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oliver, A. W., Swift, S., Lord, C. J., Ashworth, A., & Pearl, L. H. (2009). Structural basis for recruitment of BRCA2 by PALB2. EMBO Reports, 10(9), 990–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu, J., Zhao, L., Xu, Y., Zhao, W., Sung, P., & Wang, H. W. (2017). Cryo-EM structures of human RAD51 recombinase filaments during catalysis of DNA-strand exchange. Nature Structural & Molecular Biology, 24(1), 40–46.

    Article  CAS  Google Scholar 

  35. Birrane, G., Varma, A. K., Soni, A., & Ladias, J. A. (2007). Crystal structure of the BARD1 BRCT domains. Biochemistry, 46(26), 7706–7712.

    Article  CAS  PubMed  Google Scholar 

  36. Feng, H. B. J. W. Z., Weissig, G. G. T. B. H., Shindyalov, I. N., & Bourne, P. E. (2000). IN Shindyalov PE Bourne. Nucleic Acids Research, 28, 235–242.

    PubMed  PubMed Central  Google Scholar 

  37. Studio, Discovery. “Discovery studio”. Accelrys [4.5] (2021).

  38. Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., Zhou, Y., & Du, L. (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular & Molecular Immunology, 17(6), 613–620.

    Article  CAS  Google Scholar 

  39. Binkowski, T., Andrew, S. N., & Liang, J. (2003). CASTp: computed atlas of surface topography of proteins. Nucleic acids research, 31(13), 3352–3355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of computational Chemistry., 30(16), 2785–2791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Trott, O., and A. J. Olson. (2009) “Software news and update AutoDock Vina: improving the speed and accuracy of docking with a new scoring function”. Efficient Optimization, and Multithreading.

  42. Kim, G., Ison, G., McKee, A. E., Zhang, H., Tang, S., Gwise, T., Sridhara, R., Lee, E., Tzou, A., Philip, R., & Chiu, H. J. (2015). FDA approval summary: Olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapyolaparib for advanced ovarian cancer with BRCA mutation. Clinical Cancer Research, 21(19), 4257–4261.

    Article  CAS  PubMed  Google Scholar 

  43. Laskowski, Roman A., and Mark B. Swindells. (2011) “LigPlot+: multiple ligand–protein interaction diagrams for drug discovery”: 2778–2786.

  44. Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: fast, flexible, and free. Journal of computational chemistry., 26(16), 1701–1718.

    Article  PubMed  Google Scholar 

  45. Stroet, M., Caron, B., Visscher, K. M., Geerke, D. P., Malde, A. K., & Mark, A. E. (2018). Automated topology builder version 3.0: Prediction of solvation free enthalpies in water and hexane. Journal of Chemical Theory and Computation, 14(11), 5834–5845.

    Article  CAS  PubMed  Google Scholar 

  46. Izadi, S., Anandakrishnan, R., & Onufriev, A. V. (2014). Building water models: A different approach. The journal of physical chemistry letters, 5(21), 3863–3871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ross, G. A., Rustenburg, A. S., Grinaway, P. B., Fass, J., & Chodera, J. D. (2018). Biomolecular simulations under realistic macroscopic salt conditions. The Journal of Physical Chemistry B, 122(21), 5466–5486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hess, B., et al. (1997). “AIDJCC4. 3.0”.

  49. Golo, V. L., & Shaĭtan, K. V. (2002). Dynamic attractor for the Berendsen thermostat an the slow dynamics of biomacromolecules. Biofizika, 47(4), 611–617.

    CAS  PubMed  Google Scholar 

  50. Tuble, S. C., Anwar, J., & Gale, J. D. (2004). An approach to developing a force field for molecular simulation of martensitic phase transitions between phases with subtle differences in energy and structure. Journal of the American Chemical Society, 126(1), 396–405.

    Article  CAS  PubMed  Google Scholar 

  51. Páll, S., & Hess, B. (2013). A flexible algorithm for calculating pair interactions on SIMD architectures. Computer Physics Communications, 184(12), 2641–2650.

    Article  Google Scholar 

  52. Kumari, R., & Kumar, R. (2014). C. Open source drug discovery and A. Lynn. Journal of Chemical Information and Modeling, 54(1951), 10–1021.

    Google Scholar 

  53. Liu, K., & Kokubo, H. (2017). Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: A cross-docking study. Journal of chemical information and modeling, 57(10), 2514–2522.

    Article  CAS  PubMed  Google Scholar 

  54. Manke, I. A., Lowery, D. M., Nguyen, A., & Yaffe, M. B. (2003). BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science, 302(5645), 636–639.

    Article  CAS  PubMed  Google Scholar 

  55. Xiaochun, Y., Chini, C. C. S., He, M., Mer, G., & Chen, J. (2003). The BRCT domain is a phospho-protein binding domain. Science, 302(5645), 639–642.

    Article  Google Scholar 

  56. Barchiesi, G., Roberto, M., Verrico, M., Vici, P., Tomao, S., & Tomao, F. (2021). Emerging role of PARP inhibitors in metastatic triple negative breast cancer. Current scenario and future perspectives. Frontiers in Oncology. https://doi.org/10.3389/fonc.2021.769280

    Article  PubMed  PubMed Central  Google Scholar 

  57. Singh, D. D., Parveen, A., & Yadav, D. K. (2021). Role of PARP in TNBC: Mechanism of inhibition, clinical applications, and resistance. Biomedicines, 9(11), 1512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Telli, M. L., & Ford, J. M. (2010). PARP inhibitors in breast cancer. Clinical Advances in Hematology & Oncology, 8(9), 629–635.

    Google Scholar 

  59. Kim, D., & Nam, H. J. (2022). PARP inhibitors: Clinical limitations and recent attempts to overcome them. International Journal of Molecular Sciences, 23(15), 8412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cortesi, L., Rugo, H. S., & Jackisch, C. (2021). An overview of PARP inhibitors for the treatment of breast cancer. Targeted oncology, 16(3), 255–282.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lee, H. M., & Moon, A. (2016). Amygdalin regulates apoptosis and adhesion in Hs578T triple-negative breast cancer cells. Biomolecules & therapeutics, 24(1), 62.

    Article  CAS  Google Scholar 

  62. Kolesarova, A., Baldovska, S., & Roychoudhury, S. (2021). The multiple actions of amygdalin on cellular processes with an emphasis on female reproduction. Pharmaceuticals, 14(9), 881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Blaheta, R. A., Nelson, K., Haferkamp, A., & Juengel, E. (2016). Amygdalin, quackery or cure? Phytomedicine, 23(4), 367–376.

    Article  CAS  PubMed  Google Scholar 

  64. Zuhra, K., & Szabo, C. (2022). The two faces of cyanide: An environmental toxin and a potential novel mammalian gasotransmitter. The FEBS Journal, 289(9), 2481–2515.

    Article  CAS  PubMed  Google Scholar 

  65. Tsaur, I., Thomas, A., Monecke, M., Zugelder, M., Rutz, J., Grein, T., Maxeiner, S., Xie, H., Chun, F. K. H., Rothweiler, F., Cinatl, J., Michaelis, M., Haferkamp, A., & Blaheta, R. A. (2022). Amygdalin exerts antitumor activity in taxane-resistant prostate cancer cells. Cancers, 14(13), 3111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Juengel, E., Thomas, A., Rutz, J., Makarevic, J., Tsaur, I., Nelson, K., Haferkamp, A., & Blaheta, R. A. (2016). Amygdalin inhibits the growth of renal cell carcinoma cells in vitro. International Journal of Molecular Medicine, 37(2), 526–532.

    Article  CAS  PubMed  Google Scholar 

  67. Aamazadeh, F., Ostadrahimi, A., Rahbar Saadat, Y., & Barar, J. (2020). Bitter apricot ethanolic extract induces apoptosis through increasing expression of Bax/Bcl-2 ratio and caspase-3 in PANC-1 pancreatic cancer cells. Molecular Biology Reports, 47(3), 1895–1904.

    Article  CAS  PubMed  Google Scholar 

  68. Liczbiński, P., & Bukowska, B. (2018). Molecular mechanism of amygdalin action in vitro: Review of the latest research. Immunopharmacology and immunotoxicology, 40(3), 212–218.

    Article  PubMed  Google Scholar 

  69. Duracka, M. I. C. H. A. L., et al. “The impact of Amygdalin on the oxidative profile of rabbit testicular tissue”. Proceedings of the International Conference MendelNet. Vol. 23. 2016.

  70. Hawsawi, Y. M., Shams, A., Theyab, A., Abdali, W. A., Hussien, N. A., Alatwi, H. E., Alzahrani, O. R., Oyouni, A. A., Babalghith, A. O., & Alreshidi, M. (2022). BARD1 mystery: tumor suppressors are cancer susceptibility genes. BMC Cancer, 22(1), 1–23.

    Article  Google Scholar 

  71. Fong, P. C., Boss, D. S., Yap, T. A., Tutt, A., Wu, P., Mergui-Roelvink, M., Mortimer, P., Swaisland, H., Lau, A., O’Connor, M. J., & Ashworth, A. (2009). Inhibition of poly (ADP-ribose) polymerase in tumors from BRCA mutation carriers. New England Journal of Medicine, 361(2), 123–134.

    Article  CAS  PubMed  Google Scholar 

  72. Tung, N., Lin, N. U., Kidd, J., Allen, B. A., Singh, N., Wenstrup, R. J., Hartman, A. R., Winer, E. P., & Garber, J. E. (2016). Frequency of germline mutations in 25 cancer susceptibility genes in a sequential series of patients with breast cancer. Journal of Clinical Oncology, 34(13), 1460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Toss, A., Molinaro, E., Venturelli, M., Domati, F., Marcheselli, L., Piana, S., Barbieri, E., Grandi, G., Piombino, C., Marchi, I., & Tenedini, E. (2020). BRCA detection rate in an Italian cohort of luminal early-onset and triple-negative breast cancer patients without family history: when biology overcomes genealogy. Cancers, 12(5), 1252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lin, Shumeng, et al. “Amygdalin Induced Mitochondria-Mediated Apoptosis of Lung Cancer Cells via Regulating NF [Formula: see text] B-1/NF [Formula: see text] B Signaling Cascade in Vitro and in Vivo”. The American journal of Chinese medicine.: 1–26.

  75. Chang, H. K., Shin, M. S., Yang, H. Y., Lee, J. W., Kim, Y. S., Lee, M. H., Kim, J., Kim, K. H., & Kim, C. J. (2006). Amygdalin induces apoptosis through regulation of Bax and Bcl-2 expressions in human DU145 and LNCaP prostate cancer cells. Biological and Pharmaceutical Bulletin, 29(8), 1597–1602.

    Article  CAS  PubMed  Google Scholar 

  76. Moradipoodeh, B., Jamalan, M., Zeinali, M., Fereidoonnezhad, M., & Mohammadzadeh, G. (2019). In vitro and in silico anticancer activity of amygdalin on the SK-BR-3 human breast cancer cell line. Molecular Biology Reports, 46(6), 6361–6370.

    Article  CAS  PubMed  Google Scholar 

  77. Albogami, S., & Alnefaie, A. (2021). Role of Amygdalin in Blocking DNA Replication in Breast Cancer In Vitro. Current Pharmaceutical Biotechnology, 22(12), 1612–1627.

    Article  CAS  PubMed  Google Scholar 

  78. Mosayyebi, B., Mohammadi, L., Kalantary-Charvadeh, A., & Rahmati, M. (2021). Amygdalin decreases adhesion and migration of MDA-MB-231 and MCF-7 breast cancer cell lines. Current Molecular Pharmacology, 14(4), 667–675.

    Article  CAS  PubMed  Google Scholar 

  79. Zielińska, A., Płonka-Czerw, J., Nowak, A., & Kuśmierz, D. (2022). Effect of amygdalin on MCF-7, MDA-MB-231 and T-47D breast cancer cells in the in vitro study. Postępy Higieny i Medycyny Doświadczalnej, 76(1), 132–142.

    Article  Google Scholar 

  80. Al-Khafaji, K., & Tok, T. T. (2021). Amygdalin as multi-target anticancer drug against targets of cell division cycle: Double docking and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 39(6), 1965–1974.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the management of Vellore Institute of Technology, Vellore and the Council of Scientific and Industrial Reseach (CSIR), New Delhi, for providing all the necessary amenities required for the development of this computational work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satarupa Banerjee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest during the course of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 606 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, P., Karn, R., Emerson, I.A. et al. Docking and Molecular Dynamics Simulation Revealed the Potential Inhibitory Activity of Amygdalin in Triple-Negative Breast Cancer Therapeutics Targeting the BRCT Domain of BARD1 Receptor. Mol Biotechnol 66, 718–736 (2024). https://doi.org/10.1007/s12033-023-00680-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00680-8

Keywords

Navigation