Skip to main content

Advertisement

Log in

LncRNA HAGLR May Aggravate Melanoma Malignancy Via miR-4644/ASB11 Pathway

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In this study, we aimed to assess the biological functions of HAGLR and its underlying mechanisms in melanoma. HAGLR and ASB11 were knocked down by transfection with the corresponding siRNAs. Meanwhile, miR-4644 was downregulated using the miR-4644 inhibitor treatment. The target interactions among the three molecules were demonstrated using dual-luciferase reporter and RNA immunoprecipitation assays. The levels of HAGLR, miR-4644, and ASB11 in melanoma cells and tissues were assessed using quantitative real‑time PCR and western blotting. The functions and mechanisms underlying HAGLR action in melanoma progression were examined using Cell Counting Kit-8, Transwell, Caspase-3 activity, and xenograft tumor formation assays. HAGLR and ASB11 expression were elevated, whereas that of miR-4644 was downregulated in melanoma cells and tissues. The viability and migration of melanoma cells (A875 and A375) were markedly suppressed by the knockdown of HAGLR and ASB11 but promoted following miR-4644 inhibitor transfection. In contrast, apoptosis showed the opposite trend. In vivo, tumor weight declined considerably with downregulation of HAGLR. Mechanistically, HAGLR sponges miR-4644, increasing the levels of ASB11 and further aggravating melanoma. It latter negatively targets ASB11 in melanoma cells. Hence, the HAGLR-miR-4644-ASB11 axis may be a promising target for melanoma treatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated and/or analyzed during this research are included in this article.

References

  1. Lodde, G., Zimmer, L., Livingstone, E., Schadendorf, D., & Ugurel, S. (2020). Malignant melanoma. Der Pathologe, 41, 281–292.

    Article  PubMed  Google Scholar 

  2. Moran, B., Silva, R., Perry, A. S., & Gallagher, W. M. (2018). Epigenetics of malignant melanoma. Seminars in Cancer Biology, 51, 80–88.

    Article  CAS  PubMed  Google Scholar 

  3. Ahmed, B., Qadir, M. I., & Ghafoor, S. (2020). Malignant melanoma: Skin cancer-diagnosis, prevention, and treatment. Critical Reviews in Eukaryotic Gene Expression, 30, 291–297.

    Article  PubMed  Google Scholar 

  4. Elder, D. E., Bastian, B. C., Cree, I. A., Massi, D., & Scolyer, R. A. (2020). The 2018 World Health Organization classification of cutaneous, mucosal, and uveal melanoma: Detailed analysis of 9 distinct subtypes defined by their evolutionary pathway. Archives of Pathology & Laboratory Medicine, 144, 500–522.

    Article  CAS  Google Scholar 

  5. St Laurent, G., Wahlestedt, C., & Kapranov, P. (2015). The landscape of long noncoding RNA classification. Trends in Genetics: TIG, 31, 239–251.

    Article  CAS  PubMed  Google Scholar 

  6. Chi, Y., Wang, D., Wang, J., Yu, W., & Yang, J. (2019). Long non-coding RNA in the pathogenesis of cancers. Cells, 8, 1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tang, L., Zhang, W., Su, B., & Yu, B. (2013). Long noncoding RNA HOTAIR is associated with motility, invasion, and metastatic potential of metastatic melanoma. BioMed Research International, 2013, 251098.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Flockhart, R. J., Webster, D. E., Qu, K., Mascarenhas, N., Kovalski, J., Kretz, M., & Khavari, P. A. (2012). BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Research, 22, 1006–1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, Y., Qian, W., Feng, F., Cao, Q., Li, Y., Hou, Y., Zhang, L., & Fan, J. (2019). Upregulated lncRNA CASC2 may inhibit malignant melanoma development through regulating miR-18a-5p/RUNX1. Oncology Research, 27, 371–377.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang, X., Wang, Y., Lin, F., Xu, M., & Zhao, X. (2022). Long non-coding RNA LINC00665 promotes melanoma cell growth and migration via regulating the miR-224-5p/VMA21 axis. Experimental Dermatology, 31, 64–73.

    Article  CAS  PubMed  Google Scholar 

  11. Hu, Y. C., Wang, A. M., Lu, J. K., Cen, R., & Liu, L. L. (2017). Long noncoding RNA HOXD-AS1 regulates proliferation of cervical cancer cells by activating Ras/ERK signaling pathway. European Review for Medical and Pharmacological Sciences, 21, 5049–5055.

    PubMed  Google Scholar 

  12. Li, J., Zhuang, C., Liu, Y., Chen, M., Chen, Y., Chen, Z., He, A., Lin, J., Zhan, Y., Liu, L., Xu, W., Zhao, G., Guo, Y., Wu, H., Cai, Z., & Huang, W. (2016). Synthetic tetracycline-controllable shRNA targeting long non-coding RNA HOXD-AS1 inhibits the progression of bladder cancer. Journal of Experimental & Clinical Cancer Research: CR, 35, 99.

    Article  CAS  PubMed Central  Google Scholar 

  13. Wang, Y., Zhang, W., Wang, Y., & Wang, S. (2018). HOXD-AS1 promotes cell proliferation, migration and invasion through miR-608/FZD4 axis in ovarian cancer. American Journal of Cancer Research, 8, 170–182.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, C., Yang, Y., Yi, L., Paizula, X., Xu, W., & Wu, X. (2021). HOXD antisense growth-associated long noncoding RNA promotes triple-negative breast cancer progression by activating Wnt signaling pathway. Journal of Breast Cancer, 24, 315–329.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li, Y. H., Huang, G. M., Wang, W., & Zang, H. L. (2020). LncRNA HAGLR exacerbates hepatocellular carcinoma through negatively regulating miR-6785-5p. European Review for Medical and Pharmacological Sciences, 24, 9353–9360.

    PubMed  Google Scholar 

  16. Gu, P., Chen, X., Xie, R., Han, J., Xie, W., Wang, B., Dong, W., Chen, C., Yang, M., Jiang, J., Chen, Z., Huang, J., & Lin, T. (2017). lncRNA HOXD-AS1 regulates proliferation and chemo-resistance of castration-resistant prostate cancer via recruiting WDR5. Molecular Therapy: The Journal of the American Society of Gene Therapy, 25, 1959–1973.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, H., Bai, M., Zeng, A., Si, L., Yu, N., & Wang, X. (2017). LncRNA HOXD-AS1 promotes melanoma cell proliferation and invasion by suppressing RUNX3 expression. American Journal of Cancer Research, 7, 2526–2535.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, J. Y., Yang, Y., Ma, Y., Wang, F., Xue, A., Zhu, J., Yang, H., Chen, Q., Chen, M., Ye, L., Wu, H., & Zhang, Q. (2020). Potential regulatory role of lncRNA-miRNA-mRNA axis in osteosarcoma. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 121, 109627.

    Article  CAS  Google Scholar 

  19. Cao, D., Wang, Y., Li, D., & Wang, L. (2019). Reconstruction and analysis of the differentially expressed IncRNA-miRNA-mRNA network based on competitive endogenous RNA in hepatocellular carcinoma. Critical Reviews in Eukaryotic Gene Expression, 29, 539–549.

    Article  PubMed  Google Scholar 

  20. Yan, L., Li, Q., Sun, K., & Jiang, F. (2020). MiR-4644 is upregulated in plasma exosomes of bladder cancer patients and promotes bladder cancer progression by targeting UBIAD1. American Journal of Translational Research, 12, 6277–6289.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao, J., Zhu, X. C., Wu, X. S., Wang, L., Zhu, C. C., Yang, K., Deng, G. Q., Wang, A., Liu, Y., Jia, W. D., & Zhu, L. (2020). Identification of miR-4644 as a suitable endogenous normalizer for circulating miRNA quantification in hepatocellular carcinoma. Journal of Cancer, 11, 7032–7044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lei, R., Feng, L., & Hong, D. (2020). ELFN1-AS1 accelerates the proliferation and migration of colorectal cancer via regulation of miR-4644/TRIM44 axis. Cancer Biomarkers: Section A of Disease Markers, 27, 433–443.

    Article  CAS  PubMed  Google Scholar 

  23. Shen, Y., Pan, Y., Xu, L., Chen, L., Liu, L., Chen, H., Chen, Z., & Meng, Z. (2015). Identifying microRNA-mRNA regulatory network in gemcitabine-resistant cells derived from human pancreatic cancer cells. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 36, 4525–4534.

    Article  CAS  PubMed  Google Scholar 

  24. Tee, J. M., Sartori da Silva, M. A., Rygiel, A. M., Muncan, V., Bink, R., van den Brink, G. R., van Tijn, P., Zivkovic, D., Kodach, L. L., Guardavaccaro, D., Diks, S. H., & Peppelenbosch, M. P. (2012). asb11 is a regulator of embryonic and adult regenerative myogenesis. Stem Cells and Development, 21, 3091–3103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Diks, S. H., Bink, R. J., van de Water, S., Joore, J., van Rooijen, C., Verbeek, F. J., den Hertog, J., Peppelenbosch, M. P., & Zivkovic, D. (2006). The novel gene asb11: A regulator of the size of the neural progenitor compartment. The Journal of Cell Biology, 174, 581–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, J. H., Liu, S., Zhou, H., Qu, L. H., & Yang, J. H. (2014). starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Research, 42, D92-97.

    Article  CAS  PubMed  Google Scholar 

  27. Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15–20.

    Article  CAS  PubMed  Google Scholar 

  28. Melixetian, M., Pelicci, P. G., & Lanfrancone, L. (2022). Regulation of LncRNAs in melanoma and their functional roles in the metastatic process. Cells, 11, 577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zheng, L., Chen, J., Zhou, Z., & He, Z. (2017). Knockdown of long non-coding RNA HOXD-AS1 inhibits gastric cancer cell growth via inactivating the JAK2/STAT3 pathway. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 39, 1010428317705335.

    Article  PubMed  Google Scholar 

  30. Qu, Y., Zheng, S., Kang, M., Dong, R., Zhou, H., Zhao, D., & Zhao, J. (2018). Knockdown of long non-coding RNA HOXD-AS1 inhibits the progression of osteosarcoma. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 98, 899–906.

    Article  CAS  Google Scholar 

  31. Lu, S., Zhou, J., Sun, Y., Li, N., Miao, M., Jiao, B., & Chen, H. (2017). The noncoding RNA HOXD-AS1 is a critical regulator of the metastasis and apoptosis phenotype in human hepatocellular carcinoma. Molecular Cancer, 16, 125.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Paraskevopoulou, M. D., & Hatzigeorgiou, A. G. (2016). Analyzing MiRNA-LncRNA interactions. Methods in Molecular Biology (Clifton, N.J.), 1402, 271–286.

    Article  CAS  PubMed  Google Scholar 

  33. Yang, C., Shen, S., Zheng, X., Ye, K., Sun, Y., Lu, Y., & Ge, H. (2019). Long noncoding RNA HAGLR acts as a microRNA-143-5p sponge to regulate epithelial-mesenchymal transition and metastatic potential in esophageal cancer by regulating LAMP3. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 33, 10490–10504.

    Article  CAS  PubMed  Google Scholar 

  34. Sun, W., Nie, W., Wang, Z., Zhang, H., Li, Y., & Fang, X. (2020). Lnc HAGLR promotes colon cancer progression through sponging miR-185-5p and activating CDK4 and CDK6 in vitro and in vivo. OncoTargets and Therapy, 13, 5913–5925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jin, L., Luo, C., Wu, X., Li, M., Wu, S., & Feng, Y. (2021). LncRNA-HAGLR motivates triple negative breast cancer progression by regulation of WNT2 via sponging miR-335-3p. Aging, 13, 19306–19316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Machida, T., Tomofuji, T., Maruyama, T., Yoneda, T., Ekuni, D., Azuma, T., Miyai, H., Mizuno, H., Kato, H., Tsutsumi, K., Uchida, D., Takaki, A., Okada, H., & Morita, M. (2016). miR-1246 and miR-4644 in salivary exosome as potential biomarkers for pancreatobiliary tract cancer. Oncology Reports, 36, 2375–2381.

    Article  CAS  PubMed  Google Scholar 

  37. Pu, M., Chen, J., Tao, Z., Miao, L., Qi, X., Wang, Y., & Ren, J. (2019). Regulatory network of miRNA on its target: Coordination between transcriptional and post-transcriptional regulation of gene expression. Cellular and Molecular Life Sciences: CMLS, 76, 441–451.

    Article  CAS  PubMed  Google Scholar 

  38. Guan, Y., Liu, L., Jia, Q., Jin, X., Pang, Y., Meng, F., Zhang, X., & Shen, H. (2020). The role of cell growth-related gene copy number variation in autoimmune thyroid disease. Biological Trace Element Research, 195, 409–416.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

LJL conceived and designed this study. WHZ formed the methodology. ZL executed the experiments and analysis of data. LJL and WHZ performed the investigations. ZL drafted the paper. This manuscript was reviewed and revised by LJL and WHZ. This work has been reviewed and approved by all authors.

Corresponding author

Correspondence to Zi Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Consent for Publication

Consent for publication was acquired from the participants.

Informed Consent

All patients signed the written informed consent.

Research Involving Human and/or Animal Participants

The Clinical Ethics Committee of The Third Hospital of Wuhan (Wuhan, China) granted approval to the present study. The processing of clinical tissue specimens was executed in strict compliance with the ethical standards of the Declaration of Helsinki. All patients signed the written informed consent. The execution of the animal experiment strictly observed the ARRIVE guidelines and was authorized by the Animal Ethics Committee of The Third Hospital of Wuhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, L., Zhang, W. & Li, Z. LncRNA HAGLR May Aggravate Melanoma Malignancy Via miR-4644/ASB11 Pathway. Mol Biotechnol 65, 1619–1631 (2023). https://doi.org/10.1007/s12033-023-00672-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00672-8

Keywords

Navigation