Skip to main content

Advertisement

Log in

Recombinant Adeno-associated Viral Vectors Serotypes 6 and 9 are Able to Transduce Human Tracheal Epithelial Cells but Not Human Induced Pluripotent Stem Cells

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Recombinant adeno-associated viruses (rAAVs) may be useful for the development of gene therapy for hereditary diseases. Patient-specific human induced pluripotent stem cells (hiPSCs) can be differentiated into a variety of cells which are difficult or impossible to obtain by biopsy. To date, few research on the efficiency of rAAV transduction of hiPSCs has been published, but the obtained data are very contradictory and do not answer the actual question: how effective are rAAVs for the delivery of transgenes into hiPSCs. In this work, we used rAAV serotypes 5, 6, and 9 carrying the GFP transgene. The transduction efficiency of rAAV2/9-GFP and rAAV2/6-GFP for the immortalized tracheal epithelial cell line derived from a patient with cystic fibrosis (CFTE29o-) was relatively high. At the same time, the efficiency of transduction of iPSCs from a healthy donor and a cystic fibrosis (CF) donor was extremely low. Thus, our results show that the efficiency of hiPSC transduction by rAAV serotypes 5, 6, and 9 is not suitable for the delivery of transgenes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Gillmore, J. D., Gane, E., Taubel, J., Kao, J., Fontana, M., Maitland, M. L., Seitzer, J., O’Connell, D., Walsh, K. R., Wood, K., Phillips, J., Xu, Y., Amaral, A., Boyd, A. P., Cehelsky, J. E., McKee, M. D., Schiermeier, A., Harari, O., Murphy, A., … Lebwohl, D. (2021). CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. New England Journal of Medicine, 385(6), 493–502. https://doi.org/10.1056/NEJMoa2107454

    Article  CAS  PubMed  Google Scholar 

  2. Smirnikhina, S. A., Kondrateva, E. V., Adilgereeva, E. P., Anuchina, A. A., Zaynitdinova, M. I., Slesarenko, Y. S., Ershove, A. S., Ustinov, K. D., Yasinovsky, M. I., Amelina, E. L., Voronina, E. S., Yakushina, V. D., Tabakov, V. Y., & Lavrov, A. V. (2020). P.F508del editing in cells from cystic fibrosis patients. PLoS ONE. https://doi.org/10.1371/journal.pone.0242094

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vaidyanathan, S., Salahudeen, A. A., Sellers, Z. M., Bravo, D. T., Choi, S. S., Batish, A., Le, W., Baik, R., Kaushik, M. P., Galper, N., Lee, C. M., Teran, C. A., Yoo, J. H., Bao, G., Chamg, E. H., Patel, Z. V., Hwamg, P. H., Wine, J. J., Milla, C. E., … Porteus, M. H. (2020). High-efficiency, selection-free gene repair in airway stem cells from cystic fibrosis patients rescues CFTR function in differentiated epithelia. Cell Stem Cell, 26(2), 161-171.e4. https://doi.org/10.1016/j.stem.2019.11.002

    Article  CAS  PubMed  Google Scholar 

  4. Bednarski, C., Tomczak, K., Vom Hövel, B., Weber, W.-M., & Cathomen, T. (2016). Targeted integration of a super-exon into the CFTR locus leads to functional correction of a cystic fibrosis cell line model. PloS One, 11(8), e0161072. https://doi.org/10.1371/journal.pone.0161072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maule, G., Casini, A., Montagna, C., Ramalho, A. S., De Boeck, K., Debyser, Z., Carlon, M. S., Petris, G., & Cereseto, A. (2019). Allele specific repair of splicing mutations in cystic fibrosis through AsCas12a genome editing. Nature Communications, 10(1), 3556. https://doi.org/10.1038/s41467-019-11454-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sanz, D. J., & Harrison, P. T. (2019). Minigene assay to evaluate CRISPR/Cas9-based excision of intronic mutations that cause aberrant splicing in human cells. Bio-Protocol, 9(11), e3251. https://doi.org/10.21769/BioProtoc.3251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, R., McCauley, K. B., Kotton, D. N., & Hawkins, F. (2020). Differentiation of human airway-organoids from induced pluripotent stem cells (iPSCs). Methods in Cell Biology, 159, 95–114. https://doi.org/10.1016/bs.mcb.2020.03.008

    Article  CAS  PubMed  Google Scholar 

  8. Kochergin-Nikitsky, K., Belova, L., Lavrov, A., & Smirnikhina, S. (2021). Tissue and cell-type-specific transduction using rAAV vectors in lung diseases. Journal of Molecular Medicine (Berlin, Germany), 99(8), 1057–1071. https://doi.org/10.1007/s00109-021-02086-y

    Article  PubMed  Google Scholar 

  9. Rapti, K., Stillitano, F., Karakikes, I., Nonnenmacher, M., Weber, T., Hulot, J. S., & Hajjar, R. J. (2015). Effectiveness of gene delivery systems for pluripotent and differentiated cells. Molecular Therapy—Methods and Clinical Development. https://doi.org/10.1038/mtm.2014.67

    Article  PubMed  PubMed Central  Google Scholar 

  10. Duong, T. T., Lim, J., Vasireddy, V., Papp, T., Nguyen, H., Leo, L., Pan, J., Zhou, S., Chen, I. H., Bennett, J., & Mills, J. A. (2019). Comparative AAV-EGFP transgene expression using vector serotypes 1–9, 7M8, and 8b in human pluripotent stem cells, RPEs, and human and rat cortical neurons. Stem Cells International. https://doi.org/10.1155/2019/7281912

    Article  PubMed  PubMed Central  Google Scholar 

  11. Westhaus, A., Cabanes-Creus, M., Rybicki, A., Baltazar, G., Navarro, R. G., Zhu, E., Drouyer, M., Knight, M., Albu, R. F., Ng, B. H., Kalajdzic, P., Kwiatek, M., Hsu, K., Santilli, G., Gold, W., Kramer, B., Gonzalea-Cordero, A., Thrasher, A. J., Alexander, I. E., & Lisowski, L. (2020). High-throughput in vitro, ex vivo, and in vivo screen of adeno-associated virus vectors based on physical and functional transduction. Human Gene Therapy, 31(9–10), 575. https://doi.org/10.1089/hum.2019.264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Croci, S., Carriero, M. L., Capitani, K., Daga, S., Donati, F., Papa, F. T., Frullanti, E., Lopergolo, D., Lamacchia, V., Tita, R., Giliberti, A., Benetti, E., Niccheri, F., Furini, S., Lo Rizzo, C., Conticello, S. G., Reniere, A., & Meloni, I. (2020). AAV-mediated FOXG1 gene editing in human Rett primary cells. European Journal of Human Genetics, 28(10), 1446. https://doi.org/10.1038/s41431-020-0652-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Salikhova, D. I., Leonov, G. E., Bukharova, T. B., Kornienko, Z. V., Bulatenko, N. V., Efremova, A. S., Makhnach, O. V., Makarov, A. V., Elchaninov, A. V., Fathudinov, T. H., & Goldshtein, D. V. (2019). Comparative impact analysis of neuronal and glial progenitors conditioned medium on cerebellar neurons under glutamate exitotoxicity. Genes and Cells. https://doi.org/10.23868/201912031

    Article  Google Scholar 

  14. Kondrateva, E., Adilgereeva, E., Amelina, E., Tabakov, V., Demchenko, A., Ustinov, K., Yasinovsky, M., Voronina, E., Lavrov, A., & Smirnikhina, S. (2020). Generation of induced pluripotent stem cell line (RCMGi001-A) from human skin fibroblasts of a cystic fibrosis patient with p.F508del mutation. Stem Cell Research, 48, 101933. https://doi.org/10.1016/j.scr.2020.101933

    Article  CAS  PubMed  Google Scholar 

  15. Fukumoto, Y., Obata, Y., Ishibashi, K., Tamura, N., Kikuchi, I., Aoyama, K., Hattori, Y., Tsuda, K., Nakayama, Y., & Yamaguchi, N. (2010). Cost-effective gene transfection by DNA compaction at pH 4.0 using acidified, long shelf-life polyethylenimine. Cytotechnology, 62(1), 73. https://doi.org/10.1007/s10616-010-9259-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Addgene: AAV Production. (n.d.). Retrieved October 22, 2021, from https://www.addgene.org/protocols/aav-production-hek293-cells/

  17. Aurnhammer, C., Haase, M., Muether, N., Hausl, M., Rauschhuber, C., Huber, I., Nitschko, H., Busch, U., Sing, A., Ehrhardt, A., & Baiker, A. (2012). Universal real-time PCR for the detection and quantification of adeno-associated virus serotype 2-derived inverted terminal repeat sequences. Human Gene Therapy Methods, 23(1), 18–28. https://doi.org/10.1089/hgtb.2011.034

    Article  CAS  PubMed  Google Scholar 

  18. Zabner, J., Seiler, M., Walters, R., Kotin, R. M., Fulgeras, W., Davidson, B. L., & Chiorini, J. A. (2000). Adeno-associated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer. Journal of Virology, 74(8), 3852–3858. https://doi.org/10.1128/JVI.74.8.3852-3858.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Auricchio, A., O’Connor, E., Weiner, D., Gao, G.-P., Hildinger, M., Wang, L., Calcedo, R., & Wilson, J. M. (2002). Noninvasive gene transfer to the lung for systemic delivery of therapeutic proteins. The Journal of Clinical Investigation, 110(4), 499–504. https://doi.org/10.1172/JCI15780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Virella-Lowell, I., Zusman, B., Foust, K., Loiler, S., Conlon, T., Song, S., Chesnut, K. A., Ferkol, T., & Flotte, T. R. (2005). Enhancing rAAV vector expression in the lung. The Journal of Gene Medicine, 7(7), 842–850. https://doi.org/10.1002/jgm.759

    Article  CAS  PubMed  Google Scholar 

  21. Seiler, M. P., Miller, A. D., Zabner, J., & Halbert, C. L. (2006). Adeno-associated virus types 5 and 6 use distinct receptors for cell entry. Human Gene Therapy, 17(1), 10–19. https://doi.org/10.1089/hum.2006.17.10

    Article  CAS  PubMed  Google Scholar 

  22. Halbert, C. L., Allen, J. M., & Miller, A. D. (2001). Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. Journal of Virology, 75(14), 6615–6624. https://doi.org/10.1128/jvi.75.14.6615-6624.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, W., Zhang, L., Wu, Z., Pickles, R. J., & Samulski, R. J. (2011). AAV-6 mediated efficient transduction of mouse lower airways. Virology, 417(2), 327–333. https://doi.org/10.1016/j.virol.2011.06.009

    Article  CAS  PubMed  Google Scholar 

  24. Bell, C. L., Vandenberghe, L. H., Bell, P., Limberis, M. P., Gao, G.-P., Van Vliet, K., Agbandje-McKenna, M., & Wilson, J. M. (2011). The AAV9 receptor and its modification to improve in vivo lung gene transfer in mice. The Journal of Clinical Investigation, 121(6), 2427–2435. https://doi.org/10.1172/JCI57367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaludov, N., Brown, K. E., Walters, R. W., Zabner, J., & Chiorini, J. A. (2001). Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. Journal of Virology, 75(15), 6884–6893. https://doi.org/10.1128/JVI.75.15.6884-6893.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Firth, A. L., Menon, T., Parker, G. S., Qualls, S. J., Lewis, B. M., Ke, E., Dargitz, C. T., Wright, R., Khanna, A., Gage, F. H., & Verma, I. M. (2015). Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Reports, 12(9), 1385–1390. https://doi.org/10.1016/j.celrep.2015.07.062

    Article  CAS  PubMed  Google Scholar 

  27. Fleischer, A., Vallejo-Díez, S., Martín-Fernández, J. M., Sánchez-Gilabert, A., Castresana, M., Del Pozo, A., Esquisabel, A., Avila, S., Castrillo, J. L., Gainza, E., Pedraz, J. L., Vinas, M., & Bachiller, D. (2020). iPSC-Derived intestinal organoids from cystic fibrosis patients acquire CFTR activity upon talen-mediated repair of the p. F508del mutation. Molecular Therapy—Methods & Clinical Development, 17, 858–870. https://doi.org/10.1016/j.omtm.2020.04.005

    Article  CAS  Google Scholar 

  28. Palmer, D. J., Turner, D. L., & Ng, P. (2020). A single, “all-in-one” helper-dependent adenovirus to deliver donor DNA and CRISPR/Cas9 for efficient homology-directed repair. Molecular Therapy—Methods & Clinical Development, 17, 441–447. https://doi.org/10.1016/j.omtm.2020.01.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. S.P. Chumakov from the Institute of Bioorganic Chemistry (Moscow, Russia) for providing the pAAV-CMV-GFP plasmid and Dr. S.V. Kostyuk, the Head of the Laboratory of Molecular Biology of the Research Centre for Medical Genetics (Moscow, Russia), for providing a CHO cell line.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Contributions

All authors have made substantial contributions to the conception of the work, wrote the manuscript and critically revised it for important intellectual content, approved the version to be published, agreed to be accountable for all aspects of the work, ensuring that issues related to the accuracy or integrity of any part of the work are properly researched.

Corresponding author

Correspondence to L. Belova.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Ethical Approval

The study was approved by the Ethics Committee of the Research Centre for Medical Genetics (Moscow, Russia) and was conducted in accordance with the provisions of the 1975 Declaration of Helsinki.

Consent to Participate

This article does not contain any studies on human or animal subjects performed by the authors.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belova, L., Demchenko, A., Kochergin-Nikitsky, K. et al. Recombinant Adeno-associated Viral Vectors Serotypes 6 and 9 are Able to Transduce Human Tracheal Epithelial Cells but Not Human Induced Pluripotent Stem Cells. Mol Biotechnol 65, 1539–1546 (2023). https://doi.org/10.1007/s12033-023-00668-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00668-4

Keywords

Navigation