Skip to main content
Log in

Influence on Accumulation Levels and Subcellular Localization of Prolamins by Fusion with the Functional Peptide in Transgenic Rice Seeds

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

To exploit the rice seed-based oral vaccine against Sjögren’s syndrome, altered peptide ligand of N-terminal 1 (N1-APL7) from its M3 muscarinic acetylcholine receptor (M3R) autoantigen was expressed as fusion protein with the representative four types of rice prolamins (16 kDa, 14 kDa, 13 kDa, and 10 kDa prolamins) under the control of the individual native prolamin promoter. The 10kD:N1-APL7 and 14kD:N1-APL7 accumulated at high levels (287 and 58 µg/grain), respectively, whereas production levels of the remaining ones were remarkably low. Co-expression of these fusion proteins did not enhance the accumulation level of N1-APL7 in an additive manner. Downregulation of endogenous seed storage proteins by RNAi-mediated suppression also did not lead to substantial elevation of the co-expressed prolamin:N1-APL7 products. When transgenic rice seeds were subjected to in vitro proteolysis with pepsin, the 10kD:N1-APL7 was digested more quickly than the endogenous 10 kDa prolamin and the 14kD:N1-APL7 deposited in PB-Is. This difference could be explained by the finding that the 10kD:N1-APL7 was unexpectedly localized in the PB-IIs containing glutelins. These results indicated that not only accumulation level but also subcellular localization of inherent prolamins were highly influenced by the liked N1-APL7 peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ALP:

Altered peptide ligand

BiP:

Binding protein

CBB:

Coomassie brilliant blue

Cys:

Cysteine

ER:

Endoplasmic reticulum

M3R:

M3 muscarinic acetylcholine receptor

PAC vesicle:

Precursor accumulating vesicle

PB:

Protein body

PDIL:

Protein disulfide isomerase-like

PSV:

Protein-storage vacuole

RNAi:

RNA interference

SS:

Sjögren’s syndrome

SSPs:

Seed storage proteins

References

  1. Twyman, R. M., Stoger, E., Schillberg, S., Christou, P., & Fischer, R. (2003). Molecular farming in plants: Host systems and expression technology. Trends in Biotechnology, 21, 570–578.

    Article  CAS  PubMed  Google Scholar 

  2. Fischer, R., Stoger, E., Schillberg, S., Christou, P., & Twyman, R. M. (2004). Plant-based production of biopharmaceuticals. Current Opinion in Plant Biology, 7, 152–158.

    Article  CAS  PubMed  Google Scholar 

  3. Sharma, A. K., & Sharma, M. K. (2009). Plants as bioreactors: Recent developments and emerging opportunities. Biotechnology Advances, 27, 811–832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stoger, E., Ma, J. K., Fischer, R., & Christou, P. (2005). Sowing the seeds of success: Pharmaceutical proteins from plants. Current Opinion in Biotechnology, 16, 167–173.

    Article  CAS  PubMed  Google Scholar 

  5. Lau, O. S., & Sun, S. M. (2009). Plant seeds as bioreactors for recombinant protein production. Biotechnology Advances, 27, 1015–1022.

    Article  CAS  PubMed  Google Scholar 

  6. Takaiwa, F., Wakasa, Y., Hayashi, S., & Kawakatsu, T. (2017). An overview on the strategies to exploit rice endosperm as production platform for biopharmaceuticals. Plant Science, 263, 201–209.

    Article  CAS  PubMed  Google Scholar 

  7. Malonis, R. J., Lai, J. R., & Vergnolle, O. (2020). Peptide-based vaccines: Current progress and future challenges. Chemical Reviews, 120, 3210–3229.

    Article  CAS  PubMed  Google Scholar 

  8. Pihlanto, A., & Korhonen, H. (2003). Bioactive peptides and proteins. Advances in Food and Nutrition Research, 47, 175–276.

    Article  CAS  PubMed  Google Scholar 

  9. Udenigwe, C. C., & Aluko, R. E. (2012). Food protein-derived bioactive peptides: Production, processing, and potential health benefits. Journal of Food Science, 77, R11-24.

    Article  CAS  PubMed  Google Scholar 

  10. Maestri, E., Marmiroli, M., & Marmiroli, N. (2016). Bioactive peptides in plant-derived foodstuffs. Journal of Proteomics, 147, 140–155.

    Article  CAS  PubMed  Google Scholar 

  11. Duffuler, P., Bhullar, K. S., de Campos Zani, S. C., & Wu, J. (2022). Bioactive peptides: From basic research to clinical trials and commercialization. Journal of Agriculture and Food Chemistry, 70, 3585–3595.

    Article  CAS  Google Scholar 

  12. Yang, L., Wakasa, Y., & Takaiwa, F. (2008). Biopharming to increase bioactive peptides in rice seed. Journal of AOAC International, 91, 957–964.

    Article  CAS  PubMed  Google Scholar 

  13. Wakasa, Y., & Takaiwa, F. (2013). The use of rice seeds to produce human pharmaceuticals for oral therapy. Biotechnology Journal, 8, 1133–1143.

    Article  CAS  PubMed  Google Scholar 

  14. Kawakatsu, T., Yamamoto, M. P., Hirose, S., Yano, M., & Takaiwa, F. (2008). Characterization of a new rice glutelin gene GluD-1 expressed in the starchy endosperm. Journal of Experimental Botany, 59, 4233–4245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Takahashi, H., Saito, Y., Kitagawa, T., Morita, S., Masumura, T., & Tanaka, K. (2005). A novel vesicle derived directly from endoplasmic reticulum is involved in the transport of vacuolar storage proteins in rice endosperm. Plant and Cell Physiology, 46, 245–249.

    Article  CAS  PubMed  Google Scholar 

  16. Kawakatsu, T., & Takaiwa, F. (2010). Cereal seed storage protein synthesis: Fundamental processes for recombinant protein production in cereal grains. Plant Biotechnology Journal, 8, 939–953.

    Article  CAS  PubMed  Google Scholar 

  17. Wakasa, Y., Yang, L., Hirose, S., & Takaiwa, F. (2009). Expression of unprocessed glutelin precursor alters polymerization without affecting trafficking and accumulation. Journal of Experimental Botany, 60, 3503–3511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nagamine, A., Matsusaka, H., Ushijima, T., Kawagoe, Y., Ogawa, M., Okita, T. W., & Kumamaru, T. (2011). A role for the cysteine-rich 10 kDa prolamin in protein body I formation in rice. Plant and Cell Physiology, 52, 1003–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saito, Y., Shigemitsu, T., Yamasaki, R., Sasou, A., Goto, F., Kishida, K., Kuroda, M., Tanaka, K., Morita, S., Satoh, S., & Masumura, T. (2012). Formation mechanism of the internal structure of type I protein bodies in rice endosperm: Relationship between the localization of prolamin species and the expression of individual genes. The Plant Journal, 70, 1043–1055.

    Article  CAS  PubMed  Google Scholar 

  20. Sasou, A., Shigemitsu, T., Saito, Y., Tanaka, M., Morita, S., & Masumura, T. (2016). Control of foreign polypeptide localization in specific layers of protein body type I in rice seed. Plant Cell Reports, 35, 1287–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Iizuka, M., Wakasa, Y., Tsuboi, H., Asashima, H., Hirota, T., Kondo, Y., Matsumoto, I., Takaiwa, F., & Sumida, T. (2014). Suppression of collagen-induced arthritis by oral administration of transgenic rice seeds expressing altered peptide ligands of type II collagen. Plant Biotechnology Journal, 12, 1143–1152.

    Article  CAS  PubMed  Google Scholar 

  22. Hirota, T., Tsuboi, H., Iizuka-Koga, M., Takahashi, H., Asashima, H., Yokosawa, M., Kondo, Y., Ohta, M., Wakasa, Y., Matsumoto, I., Takaiwa, F., & Sumida, T. (2017). Suppression of glucose-6-phosphate-isomerase induced arthritis by oral administration of transgenic rice seeds expressing altered peptide ligands of glucose-6-phosphate-isomerase. Modern Rheumatology, 27, 457–465.

    Article  CAS  PubMed  Google Scholar 

  23. Takagi, H., Hiroi, T., Yang, L., Tada, Y., Yuki, Y., Takamura, K., Ishimitsu, R., Kawauchi, H., Kiyono, H., & Takaiwa, F. (2005). A rice-based edible vaccine expressing multiple T cell epitopes induces oral tolerance for inhibition of Th2-mediated IgE responses. Proceedings of the National Academy of Sciences, 102, 17525–17530.

    Article  CAS  Google Scholar 

  24. Yasuda, H., Hayashi, Y., Jomori, T., & Takaiwa, F. (2006). The correlation between expression and localization of a foreign gene product in rice endosperm. Plant and Cell Physiology, 47, 756–763.

    Article  CAS  PubMed  Google Scholar 

  25. Yang, L., Tada, Y., Yamamoto, M. P., Zhao, H., Yoshikawa, M., & Takaiwa, F. (2006). A transgenic rice seed accumulating an anti-hypertensive peptide reduces the blood pressure of spontaneously hypertensive rats. FEBS Letters, 580, 3315–3320.

    Article  CAS  PubMed  Google Scholar 

  26. Wakasa, Y., Yasuda, H., & Takaiwa, F. (2006). High accumulation of bioactive peptide in transgenic rice seeds by expression of introduced multiple genes. Plant Biotechnology Journal, 4, 499–510.

    CAS  PubMed  Google Scholar 

  27. Gordon, B. P., & Guy, H. C. (2007). Regulation of salivary gland function by autonomic nerves. Autonomic Neuroscience, 133, 3–18.

    Article  Google Scholar 

  28. Bacman, S., Berra, A., Sterin-Borda, L., & Borda, E. (2001). Muscarinic acetylcholine receptor antibodies as a new marker of dry eye Sjögren’s syndrome. Investigative Ophthalmology & Visual Science, 42, 321–327.

    CAS  Google Scholar 

  29. Naito, Y., Matsumoto, I., Wakamatsu, E., Goto, D., Sugiyama, T., Matsumura, R., Ito, S., Tsutsumi, A., & Sumida, T. (2005). Muscarinic acetylcholine receptor autoantibodies in patients with Sjögren’s syndrome. Annals of the Rheumatic Diseases, 64, 510–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Asashima, H., Tsuboi, H., Takahashi, H., Hirota, T., Iizuka, M., Kondo, Y., Matsui, M., Matsumoto, I., & Sumida, T. (2015). The anergy induction of M3 muscarinic acetylcholine receptor–reactive CD4+ T cells suppresses experimental sialadenitis-like Sjögren’s syndrome. Arthritis & Rhematology, 67, 2213–2225.

    Article  CAS  Google Scholar 

  31. Sloan-Lancaster, J., & Allen, P. M. (1996). Altered peptide ligand-induced partial T cell activation: Molecular mechanisms and role in T cell biology. Annual Review of Immunology, 14, 1–27.

    Article  CAS  PubMed  Google Scholar 

  32. Kudo, H., Tsuboi, H., Asashima, H., Takahashi, H., Ono, Y., Abe, S., Honda, F., Kondo, Y., Wakasa, Y., Takaiwa, F., Takano, M., Matsui, M., Matsumoto, I., & Sumida, T. (2020). Transgenic rice seeds expressing altered peptide ligands against the M3 muscarinic acetylcholine receptor suppress experimental sialadenitis-like Sjögren’s syndrome. Modern Rheumatology, 30, 884–893.

    Article  CAS  PubMed  Google Scholar 

  33. Takagi, H., Hiroi, T., Hirose, S., Yang, L., & Takaiwa, F. (2010). Rice seed ER-derived protein body as an efficient delivery vehicle for oral tolerogenic peptides. Peptides, 31, 1421–1425.

    Article  CAS  PubMed  Google Scholar 

  34. Takaiwa, F., Wakasa, Y., Takagi, H., & Hiroi, T. (2015). Rice seed for delivery of vaccines to gut mucosal immune tissues. Plant Biotechnology Journal, 13, 1041–1055.

    Article  CAS  PubMed  Google Scholar 

  35. Shigemitsu, T., Ozaki, S., Saito, Y., Kuroda, M., Morita, S., Satoh, S., & Masumura, T. (2012). Production of human growth hormone in transgenic rice seeds: Co-introduction of RNA interference cassette for suppressing the gene expression of endogenous storage proteins. Plant Cell Reports, 31, 539–549.

    Article  CAS  PubMed  Google Scholar 

  36. Yang, L., Hirose, S., Takahashi, H., Kawakatsu, T., & Takaiwa, F. (2012). Recombinant protein yield in rice seed is enhanced by specific suppression of endogenous seed proteins at the same deposit site. Plant Biotechnology Journal, 10, 1035–1045.

    Article  CAS  PubMed  Google Scholar 

  37. Takaiwa, F. (2013). Increasing the production yield of recombinant protein in transgenic seeds by expanding the deposition space within the intracellular compartment. Bioengineered, 4, 136–139.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kurokawa, S., Kuroda, M., Mejima, M., Nakamura, R., Takahashi, Y., Sagara, H., Takeyama, N., Satoh, S., Kiyono, H., Teshima, R., Masumura, T., & Yuki, Y. (2014). RNAi-mediated suppression of endogenous storage proteins leads to a change in localization of overexpressed cholera toxin B-subunit and the allergen protein RAG2 in rice seeds. Plant Cell Reports, 33, 75–87.

    Article  CAS  PubMed  Google Scholar 

  39. Takaiwa, F., Wakasa, Y., Ozawa, K., & Sekikawa, K. (2021). Improvement of production yield and extraction efficacy of recombinant protein by high endosperm-specific expression along with simultaneous suppression of major seed storage proteins. Plant Science, 302, 110692.

    Article  CAS  PubMed  Google Scholar 

  40. Takaiwa, F., Yang, L., Wakasa, Y., & Ozawa, K. (2018). Compensatory rebalancing of rice prolamins by production of recombinant prolamin/bioactive peptide fusion proteins within ER-derived protein bodies. Plant Cell Reports, 37, 209–223.

    Article  CAS  PubMed  Google Scholar 

  41. Kawakatsu, T., Hirose, Y., Yasuda, H., & Takaiwa, F. (2010). Reducing rice seed storage protein accumulation leads to changes in nutrient quality and storage organelle formation. Plant Physiology, 154, 1842–1854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goto, F., Yoshihara, T., Sugimoto, N., Toki, S., & Takaiwa, F. (1999). Iron fortification of rice seed by the soybean ferritin gene. Nature Biotechnology, 17, 282–286.

    Article  CAS  PubMed  Google Scholar 

  43. Tada, Y., Utsumi, S., & Takaiwa, F. (2003). Foreign gene products can be enhanced by introduction into storage protein mutants. Plant Biotechnology Journal, 1, 411–422.

    Article  CAS  PubMed  Google Scholar 

  44. Oono, Y., Wakasa, Y., Hirose, S., Yang, L., Sakuta, C., & Takaiwa, F. (2010). Analysis of ER stress in developing rice endosperm accumulating β-amyoid peptide. Plant Biotechnology Journal, 8, 691–718.

    Article  CAS  PubMed  Google Scholar 

  45. Wakasa, Y., Yasuda, H., Oono, Y., Kawakatsu, T., Hirose, S., Takahashi, H., Hayashi, S., Yang, L., & Takaiwa, F. (2011). Expression of ER quality control related genes in response to changes in BiP1 levels in developing rice endosperm. The Plant Journal, 65, 675–689.

    Article  CAS  PubMed  Google Scholar 

  46. Wakasa, Y., Hayashi, S., & Takaiwa, F. (2012). Expression of OsBiP4 and OsBiP5 is highly correlated with the endoplasmic reticulum stress response in rice. Planta, 236, 1519–1527.

    Article  CAS  PubMed  Google Scholar 

  47. Ohta, M., Wakasa, Y., Takahashi, H., Hayashi, S., Kudo, K., & Takaiwa, F. (2013). Analysis of rice ER-resident J-proteins reveals diversity and functional differentiation of the ER-resident Hsp70 system in plants. Journal of Experimental Botany, 64, 5429–5441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ohta, M., & Takaiwa, F. (2020). OsERdj7 is an ER-resident J-protein involved in ER quality control in rice endosperm. Journal of Plant Physiology, 245, 153109.

    Article  CAS  PubMed  Google Scholar 

  49. Yasuda, H., Hirose, S., Kawakatsu, T., Wakasa, Y., & Takiwa, F. (2009). Overexpression of BiP has inhibitory effects on the accumulation of seed storage proteins in endosperm cells of rice. Plant and Cell Physiology, 50, 1532–1543.

    Article  CAS  PubMed  Google Scholar 

  50. Yang, L., Kajiura, H., Suzuki, K., Hirose, S., Fujiyama, K., & Takaiwa, F. (2008). Generation of a transgenic rice seed-based edible vaccine against house dust mite allergy. Biochemical and Biophysical Research Communications, 365, 334–339.

    Article  CAS  PubMed  Google Scholar 

  51. Onda, Y., Nagamine, A., Sakurai, M., Kumamaru, T., Ogawa, M., & Kawagoe, Y. (2011). Distinct roles of protein disulfide isomerase and P5 sulfhydryl oxidoreductases in multiple pathways for oxidation of structurally diverse storage proteins in rice. The Plant Cell, 23, 210–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu, Y., & Messing, J. (2014). Proteome balancing of the maize seed for higher nutritional value. Frontiers in Plant Science, 5, 240.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Herman, E. M. (2014). Soybean seed proteome rebalancing. Frontiers in Plant Science, 5, 437.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Morandini, F., Avesani, L., Bortesi, L., Van Droogenbroeck, B., De Wilde, K., Arcalis, E., Bazzoni, F., Santi, L., Brozzetti, A., Falorni, A., Stoger, E., Depicker, A., & Pezzotti, M. (2011). Non-food/feed seeds as biofactories for the high-yield production of recombinant pharmaceuticals. Plant Biotechnology Journal, 9, 911–921.

    Article  CAS  PubMed  Google Scholar 

  55. Wang, S., Takahashi, H., Kajiura, H., Kawakatsu, T., Fujiyama, K., & Takaiwa, F. (2013). Transgenic rice seeds accumulating recombinant hypoallergenic birch pollen allergen Bet v 1 generate giant protein bodies. Plant and Cell Physiology, 54, 917–933.

    Article  CAS  PubMed  Google Scholar 

  56. Qu, L. Q., & Takaiwa, F. (2004). Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant Biotechnology Journal, 2, 113–125.

    Article  CAS  PubMed  Google Scholar 

  57. Pedrazzini, E., Mainieri, D., Marrano, C. A., & Vitale, A. (2016). Where do protein bodies of cereal seeds come from? Frontiers Plant Sci., 7, 1139.

    Article  Google Scholar 

  58. Shewry, P. R., & Halford, N. G. (2002). Cereal seed storage proteins: Structures, properties and role in grain utilization. Journal of Experimental Botany, 370, 947–958.

    Article  Google Scholar 

  59. Conrad, U., & Fiedler, U. (1998). Compartment-specific accumulation of recombinant immunoglobulins in plant cells: An essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Molecular Biology, 38, 101–109.

    Article  CAS  PubMed  Google Scholar 

  60. Avesani, L., Falorni, A., Tornielli, G. B., Marusic, C., Porceddu, A., Polverari, A., Faleri, C., Calcinaro, F., & Pezzotti, M. (2003). Improved in planta expression of the human islet autoantigen glutamic acid decarboxylase (GAD65). Transgenic Research, 12, 203–212.

    Article  CAS  PubMed  Google Scholar 

  61. Takagi, H., Saito, S., Yang, L., Nagasaka, S., Nishizawa, N., & Takaiwa, F. (2005). Oral immunotherapy against a pollen allergy using a seed-based peptide vaccine. Plant Biotechnology Journal, 3, 521–533.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Ms. Y. Ikemoto and Y. Yajima for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumio Takaiwa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 566 kb)

Supplementary file2 (DOCX 14 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takaiwa, F. Influence on Accumulation Levels and Subcellular Localization of Prolamins by Fusion with the Functional Peptide in Transgenic Rice Seeds. Mol Biotechnol 65, 1869–1886 (2023). https://doi.org/10.1007/s12033-023-00666-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-023-00666-6

Keywords

Navigation