Skip to main content

Advertisement

Log in

LncRNA SNHG7 Knockdown Aggravates Hepatic Ischemia–Reperfusion Injury and Promotes Apoptosis in Hemorrhagic Shock Pregnant Rats by Modulating miR-34a-5p/YWHAG Axis

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Hemorrhagic shock is a frequent threat to pregnant women, and blood transfusions can contribute to organ damage, including hepatic ischemia–reperfusion (HIR) injury. LncRNA SNHG7 (SNHG7) has been reported to exert an essential role in various diseases, while the effect of SNHG7 on HIR injury induced by hemorrhagic shock and reperfusion in pregnant rats is still unclear. In our study, we examined the function and mechanism of SNHG7 in the progression of HIR injury in pregnant rats. The results showed that SNHG7 expression was low in the hepatic tissues of pregnant rats after the hemorrhagic shock and reperfusion modeling. Knockdown of SNHG7 further aggravated hepatic injury, apoptosis, and oxidative stress induced by hemorrhagic shock and reperfusion during pregnancy. Additionally, SNHG7 was bound directly to miR-34a-5p, and miR-34a-5p inhibitors partially reversed the effect of SNHG7 silencing on models of hemorrhagic shock and reperfusion. Furthermore, YWHAG is a direct target of miR-34a-5p and is negatively regulated by miR-34a-5p mimics. Overexpression of YWHAG effectively eliminated the effect of SNHG7 knockdown on pregnant rats. In summary, this investigation proved that SNHG7 knockdown exacerbated HIR injury after hemorrhagic shock in pregnant rats, and reperfusion might by mediating miR-34a-5p/YWHAG axis, indicating that SNHG7 can serve as a target gene for the treatment of HIR injury caused by hemorrhagic shock and reperfusion during pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data underlying this article are available in the article. If needed, please contact the corresponding author. The email address is zhujiangang1@126.com.

References

  1. Say, L., Chou, D., Gemmill, A., Tunçalp, Ö., Moller, A.-B., Daniels, J., Gülmezoglu, A. M., Temmerman, M., & Alkema, L. (2014). Global causes of maternal death: A who systematic analysis. The Lancet Global Health., 2(6), e323–e333. https://doi.org/10.1016/s2214-109x(14)70227-x

    Article  PubMed  Google Scholar 

  2. Gravante, D. D., & Venditti, D. (2007). Post-endoscopic polypectomy delayed bleeding concomitant with an abdominoperineal resection: A case report. European Review for Medical and Pharmacological Sciences., 11(5), 355–357.

    CAS  PubMed  Google Scholar 

  3. Qin, L.-B., Li, Z.-Y., Li, H., Fan, X.-Q., Liu, H.-G., Dong, X.-M., & Jia, W.-Y. (2018). Inhibitive effects of microrna-34a on protecting against ischemia-reperfusion injury of vital organs in hemorrhagic shock pregnant mice. European Review for Medical and Pharmacological Sciences, 22(6), 1812–1818.

    PubMed  Google Scholar 

  4. Era, S., Matsunaga, S., Matsumura, H., Murayama, Y., Takai, Y., & Seki, H. (2015). Usefulness of shock indicators for determining the need for blood transfusion after massive obstetric hemorrhage. The Journal of Obstetrics and Gynaecology Research, 41(1), 39–43. https://doi.org/10.1111/jog.12480

    Article  PubMed  Google Scholar 

  5. Fontana, R. J., Hayashi, P. H., Gu, J., Reddy, K. R., Barnhart, H., Watkins, P. B., Serrano, J., Lee, W. M., Chalasani, N., Stolz, A., Davern, T., Talwakar, J. A., & Network, D. (2014). Idiosyncratic drug-induced liver injury is associated with substantial morbidity and mortality within 6 months from onset. Gastroenterology, 147(1), 96–108. https://doi.org/10.1053/j.gastro.2014.03.045

    Article  CAS  PubMed  Google Scholar 

  6. Arguello, G., Balboa, E., Arrese, M., & Zanlungo, S. (2015). Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochimica et Biophysica Acta, 1852(9), 1765–1778. https://doi.org/10.1016/j.bbadis.2015.05.015

    Article  CAS  PubMed  Google Scholar 

  7. Chen, R. J., Wu, H. H., & Wang, Y. J. (2015). Strategies to prevent and reverse liver fibrosis in humans and laboratory animals. Archives of Toxicology, 89(10), 1727–1750. https://doi.org/10.1007/s00204-015-1525-6

    Article  CAS  PubMed  Google Scholar 

  8. Gao, Q., Gu, Y., Jiang, Y., Fan, L., Wei, Z., Jin, H., Yang, X., Wang, L., Li, X., Tai, S., Yang, B., & Liu, Y. (2018). Long non-coding Rna Gm2199 rescues liver injury and promotes hepatocyte proliferation through the upregulation of Erk1/2. Cell Death & Disease, 9(6), 602. https://doi.org/10.1038/s41419-018-0595-9

    Article  CAS  Google Scholar 

  9. Zhong, P., Xu, J., Yang, D., Shen, Y., Wang, L., Feng, Y., Du, C., Song, Y., Wu, C., Hu, X., & Sun, Y. (2020). Covid-19-associated gastrointestinal and liver injury: Clinical features and potential mechanisms. Signal Transduction and Targeted Therapy, 5(1), 256. https://doi.org/10.1038/s41392-020-00373-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kong, X., Duan, Y., Sang, Y., Li, Y., Zhang, H., Liang, Y., Liu, Y., Zhang, N., & Yang, Q. (2019). Lncrna-Cdc6 promotes breast cancer progression and function as cerna to target cdc6 by sponging microrna-215. Journal of Cellular Physiology, 234(6), 9105–9117. https://doi.org/10.1002/jcp.27587

    Article  CAS  PubMed  Google Scholar 

  11. Wang, L., Cho, K. B., Li, Y., Tao, G., Xie, Z., & Guo, B. (2019). Long noncoding Rna (Lncrna)-mediated competing endogenous Rna networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms20225758

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cao, H.-L., Li, Z.-J., Huang, P.-L., Yue, Y.-L., & Xi, J.-N. (2019). Lncrna-Rmrp promotes proliferation, migration and invasion of bladder cancer Via Mir-206. European Review for Medical and Pharmacological Sciences., 23(3), 1012–1021.

    PubMed  Google Scholar 

  13. Tang, B., Bao, N., He, G., & Wang, J. (2019). Long noncoding Rna hotair regulates autophagy via the Mir-20b-5p/Atg7 axis in hepatic ischemia/reperfusion injury. Gene. https://doi.org/10.1016/j.gene.2018.10.059

    Article  PubMed  Google Scholar 

  14. Zhang, Y., Zhang, H., Zhang, Z., Li, S., Jiang, W., Li, X., & Lv, J. (2019). Lncrna malat1 cessation antagonizes hypoxia/reoxygenation injury in hepatocytes by inhibiting apoptosis and inflammation via the Hmgb1-Tlr4 axis. Molecular Immunology. https://doi.org/10.1016/j.molimm.2019.04.015

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pei, L. J., Sun, P. J., Ma, K., Guo, Y. Y., Wang, L. Y., & Liu, F. D. (2021). Lncrna-Snhg7 interferes with Mir-34a to de-sensitize gastric cancer cells to cisplatin. Cancer Biomarkers, 30(1), 127–137. https://doi.org/10.3233/CBM-201621

    Article  CAS  PubMed  Google Scholar 

  16. Zeng, J., Ma, Y.-X., Liu, Z.-H., & Zeng, Y.-L. (2019). Lncrna Snhg7 contributes to cell proliferation, invasion and prognosis of cervical cancer. European Review for Medical and Pharmacological Sciences., 23(21), 9277–9285.

    CAS  PubMed  Google Scholar 

  17. Cheng, D., Fan, J., Ma, Y., Zhou, Y., Qin, K., Shi, M., & Yang, J. (2019). Lncrna Snhg7 promotes pancreatic cancer proliferation through Id4 by sponging Mir-342-3p. Cell & Bioscience. https://doi.org/10.1186/s13578-019-0290-2

    Article  Google Scholar 

  18. Yang, X., Sun, L., Wang, L., Yao, B., Mo, H., & Yang, W. (2019). Lncrna Snhg7 accelerates the proliferation, migration and invasion of hepatocellular carcinoma cells via regulating Mir-122-5p and Rpl4. Biomedicine & Pharmacotherapy. https://doi.org/10.1016/j.biopha.2019.109386

    Article  Google Scholar 

  19. Yao, X., Liu, C., Liu, C., Xi, W., Sun, S., & Gao, Z. (2019). Lncrna Snhg7 sponges Mir-425 to promote proliferation, migration, and invasion of hepatic carcinoma cells via Wnt/beta-catenin/Emt signalling pathway. Cell Biochemistry and Function, 37(7), 525–533. https://doi.org/10.1002/cbf.3429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun, W., Sun, L., Sun, X., & Ma, S. (2021). Long non-coding Rna Snhg7 upregulates Fgf9 to alleviate oxygen and glucose deprivation-induced neuron cell injury in a Mir-134-5p-dependent manner. Metabolic Brain Disease, 36(8), 2483–2494. https://doi.org/10.1007/s11011-021-00852-y

    Article  CAS  PubMed  Google Scholar 

  21. Jonas, S., & Izaurralde, E. (2015). Towards a molecular understanding of microrna-mediated gene silencing. Nature Reviews Genetics, 16(7), 421–433. https://doi.org/10.1038/nrg3965

    Article  CAS  PubMed  Google Scholar 

  22. Friedman, R. C., Farh, K. K., Burge, C. B., & Bartel, D. P. (2009). Most mammalian Mrnas are conserved targets of micrornas. Genome Research, 19(1), 92–105. https://doi.org/10.1101/gr.082701.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xiao, Y., Zhang, S., Li, Q., Liu, Z., Mai, W., Chen, W., Lei, J., & Hu, H. (2019). Mir-219a-5p ameliorates hepatic ischemia/reperfusion injury via impairing Tp53bp2. Digestive Diseases and Sciences, 64(8), 2177–2186. https://doi.org/10.1007/s10620-019-05535-4

    Article  CAS  PubMed  Google Scholar 

  24. Hao, W., Zhao, Z. H., Meng, Q. T., Tie, M. E., Lei, S. Q., & Xia, Z. Y. (2017). Propofol protects against hepatic ischemia/reperfusion injury via Mir-133a-5p regulating the expression of Mapk6. Cell Biology International, 41(5), 495–504. https://doi.org/10.1002/cbin.10745

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, F.-M., Zheng, W.-H., & Wang, H.-J. (2020). Mir-34a-5p inhibition attenuates Lps-induced endothelial cell injury by targeting foxm1. European Review for Medical and Pharmacological Sciences., 24(20), 10829–10838.

    PubMed  Google Scholar 

  26. Li, C., Wang, K., Guo, L., Sun, H., Huang, H., Lin, X., & Li, Q. (2018). Inhibition of Mir-34a-5p alleviates hypoxia-reoxygenation injury by enhancing autophagy in steatotic hepatocytes. Biology Open. https://doi.org/10.1242/bio.033290

    Article  PubMed  PubMed Central  Google Scholar 

  27. Aghazadeh, Y., & Papadopoulos, V. (2016). The role of the 14–3-3 protein family in health, disease, and drug development. Drug Discovery Today, 21(2), 278–287. https://doi.org/10.1016/j.drudis.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  28. Kawamoto, Y., Akiguchi, I., Tomimoto, H., Shirakashi, Y., Honjo, Y., & Budka, H. (2006). Upregulated expression of 14–3-3 proteins in astrocytes from human cerebrovascular ischemic lesions. Stroke, 37(3), 830–835. https://doi.org/10.1161/01.STR.0000202587.63936.37

    Article  CAS  PubMed  Google Scholar 

  29. Zhou, X. Y., Hu, D. X., Chen, R. Q., Chen, X. Q., Dong, W. L., & Yi, C. L. (2017). 14–3-3 isoforms differentially regulate nfkappab signaling in the brain after ischemia-reperfusion. Neurochemical Research, 42(8), 2354–2362. https://doi.org/10.1007/s11064-017-2255-3

    Article  CAS  PubMed  Google Scholar 

  30. Pei, J., Sun, X., Yang, G., & Zhang, S. (2020). Lncrna Kcnq1ot1 ameliorates the liver injury induced by acetaminophen through the regulation of Mir-122-5p/Ces2 axis. Molecular and Cellular Biochemistry, 475(1–2), 107–118. https://doi.org/10.1007/s11010-020-03863-y

    Article  CAS  PubMed  Google Scholar 

  31. Liu, J., Yao, L., Zhang, M., Jiang, J., Yang, M., & Wang, Y. (2019). Downregulation of Lncrna-Xist inhibited development of non-small cell lung cancer by activating Mir-335/Sod2/Ros signal pathway mediated pyroptotic cell death. Aging (Albany NY)., 11(18), 7830–7846. https://doi.org/10.18632/aging.102291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bian, Z., Ji, W., Xu, B., Huang, W., Jiao, J., Shao, J., & Zhang, X. (2020). The role of long noncoding Rna Snhg7 in human cancers (review). Molecular and Clinical Oncology, 13(5), 45. https://doi.org/10.3892/mco.2020.2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu, J., Pei, Y., Lu, J., Liang, X., Li, Y., Wang, J., & Zhang, Y. (2021). Lncrna Snhg7 alleviates Il-1beta-induced osteoarthritis by inhibiting Mir-214-5p-mediated Ppargc1b signaling pathways. International Immunopharmacology. https://doi.org/10.1016/j.intimp.2020.107150

    Article  PubMed  PubMed Central  Google Scholar 

  34. Xu, L., Yu, Y., Sang, R., Li, J., Ge, B., & Zhang, X. (2018). Protective effects of taraxasterol against ethanol-induced liver injury by regulating Cyp2e1/Nrf2/Ho-1 and Nf-Kappab signaling pathways in mice. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2018/8284107

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tian, F., Wang, J., Zhang, Z., & Yang, J. (2020). Lncrna Snhg7/Mir-34a-5p/Syvn1 axis plays a vital role in proliferation, apoptosis and autophagy in osteoarthritis. Biological Research, 53(1), 9. https://doi.org/10.1186/s40659-020-00275-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou, T., Wang, S., Lu, K., & Yin, C. (2020). Long non-coding Rna Snhg7 alleviates oxygen and glucose deprivation/reoxygenation-induced neuronal injury by modulating Mir-9/Sirt1 Axis in Pc12 cells: Potential role in ischemic stroke. Neuropsychiatric Disease and Treatment. https://doi.org/10.2147/NDT.S273421

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pei, Y. F., He, Y., Hu, L. Z., Zhou, B., Xu, H. Y., & Liu, X. Q. (2020). The Crosstalk between Lncrna-Snhg7/Mirna-181/Cbx7 modulates malignant character in lung adenocarcinoma. American Journal of Pathology, 190(6), 1343–1354. https://doi.org/10.1016/j.ajpath.2020.02.011

    Article  CAS  PubMed  Google Scholar 

  38. Yue, X., Dong, C., Ye, Z., Zhu, L., Zhang, X., Wang, X., Mo, F., Li, Z., & Pan, B. (2021). Lncrna Snhg7 sponges Mir-449a to promote pituitary adenomas progression. Metabolic Brain Disease, 36(1), 123–132. https://doi.org/10.1007/s11011-020-00611-5

    Article  CAS  PubMed  Google Scholar 

  39. Zhou, X., Wang, Z., Xu, B., Ji, N., Meng, P., Gu, L., & Li, Y. (2021). Long non-coding Rna norad protects against cerebral ischemia/reperfusion injury induced brain damage, cell apoptosis, oxidative stress and inflammation by regulating Mir-30a-5p/Ywhag. Bioengineered, 12(2), 9174–9188. https://doi.org/10.1080/21655979.2021.1995115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangang Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Tang, J., Zhu, S. et al. LncRNA SNHG7 Knockdown Aggravates Hepatic Ischemia–Reperfusion Injury and Promotes Apoptosis in Hemorrhagic Shock Pregnant Rats by Modulating miR-34a-5p/YWHAG Axis. Mol Biotechnol 65, 983–996 (2023). https://doi.org/10.1007/s12033-022-00613-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00613-x

Keywords

Navigation