Skip to main content
Log in

E3 Ubiquitin Ligase RNF125 Suppresses Immune Escape in Head and Neck Squamous Cell Carcinoma by Regulating PD-L1 Expression

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Head and neck squamous cell carcinoma (HNSCC) is a lethal malignancy. Given the essential roles of E3 ligases in cancer immunotherapies, this paper explored the effect of E3 ubiquitin ligase ring finger protein 125 (RNF125) on immune escape in HNSCC. After delivering overexpressed (oe)-RNF125, interferon-gamma, or oe-programmed death-ligand 1 (PD-L1) into HNSCC cells and cell culture with carboxyfluorescein succinimidyl ester-labeled CD8+ T cells, RNF125 and PD-L1 levels were determined via RT-qPCR and Western blot, with HNSCC cell behaviors assessed via colony formation assay, Transwell assays and flow cytometry, and inflammatory factors measured via ELISA. PD-L1 ubiquitination level and PD-L1’s interaction with RNF125 were analyzed via co-immunoprecipitation. The in vivo action of RNF125 on HNSCC was validated via nude mouse tumorigenicity assay. Briefly, RNF125 was weakly expressed in HNSCC cells. RNF125 overexpression inhibited immune escape of HNSCC cells, evidenced by decreased TSCCA cell proliferation, migration, and invasion, increased CD8+ T cell proliferation, and elevated IL-2 and TNF-α levels. RNF125 downregulated PD-L1 in TSCCA cells and facilitated PD-L1 ubiquitinational degradation. PD-L1 overexpression partially abated RNF125-mediated suppression on TSCCA cell immune escape. Moreover, RNF125 suppressed tumorigenesis and tumor growth in vivo. Overall, RNF125 promoted PD-L1 ubiquitinational degradation, hence inhibiting immune escape in HNSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Johnson, D. E., Burtness, B., Leemans, C. R., Lui, V. W. Y., Bauman, J. E., & Grandis, J. R. (2020). Head and neck squamous cell carcinoma. Nature Reviews, Disease Primers, 6, 92.

    Article  PubMed  Google Scholar 

  2. Economopoulou, P., de Bree, R., Kotsantis, I., & Psyrri, A. (2019). Diagnostic tumor markers in head and neck squamous cell carcinoma (HNSCC) in the clinical setting. Frontiers in Oncology, 9, 827.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vucicevic Boras, V., Fucic, A., Baranovic, S., Blivajs, I., Milenovic, M., Bisof, V., Rakusic, Z., Ceppi, M., & Bruzzone, M. (2019). Environmental and behavioural head and neck cancer risk factors. Central European Journal of Public Health, 27, 106–109.

    Article  PubMed  Google Scholar 

  4. Cohen, N., Fedewa, S., & Chen, A. Y. (2018). Epidemiology and demographics of the head and neck cancer population. Oral and Maxillofacial Surgery Clinics of North America, 30, 381–395.

    Article  PubMed  Google Scholar 

  5. Li, H., Liu, Y. T., Chen, L., Zhou, J. J., Chen, D. R., Li, S. J., & Sun, Z. J. (2021). CMTM4 regulates epithelial–mesenchymal transition and PD‐L1 expression in head and neck squamous cell carcinoma. Molecular Carcinogenesis, 60, 556–566.

    Article  CAS  PubMed  Google Scholar 

  6. Wei, G. G., Gao, L., Tang, Z. Y., Lin, P., Liang, L. B., Zeng, J. J., Chen, G., & Zhang, L. C. (2019). Drug repositioning in head and neck squamous cell carcinoma: An integrated pathway analysis based on connectivity map and differential gene expression. Pathology, Research and Practice, 215, 152378.

    Article  CAS  PubMed  Google Scholar 

  7. Tang, S., Ning, Q., Yang, L., Mo, Z., & Tang, S. (2020). Mechanisms of immune escape in the cancer immune cycle. International Immunopharmacology, 86, 106700.

    Article  CAS  PubMed  Google Scholar 

  8. Angell, T. E., Lechner, M. G., Jang, J. K., Correa, A. J., LoPresti, J. S., & Epstein, A. L. (2014). BRAFV600E in papillary thyroid carcinoma is associated with increased programmed death ligand 1 expression and suppressive immune cell infiltration. Thyroid, 24, 1385–1393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhi, J., Zhang, P., Zhang, W., Ruan, X., Tian, M., Guo, S., Zhang, W., Zheng, X., Zhao, L., & Gao, M. (2021). Inhibition of BRAF sensitizes thyroid carcinoma to immunotherapy by enhancing tsMHCII-mediated immune recognition. Journal of Clinical Endocrinology and Metabolism, 106, 91–107.

    Article  PubMed  Google Scholar 

  10. Kythreotou, A., Siddique, A., Mauri, F. A., Bower, M., & Pinato, D. J. (2018). PD-L1. Journal of Clinical Pathology, 71, 189–194.

    Article  PubMed  Google Scholar 

  11. Svajger, U., Tesic, N., & Rozman, P. (2021). Programmed death ligand 1 (PD-L1) plays a vital part in DC tolerogenicity induced by IFN-γ. International Immunopharmacology, 99, 107978.

    Article  CAS  PubMed  Google Scholar 

  12. Hsieh, C. Y., Lien, M. Y., Lin, C. Y., Lo, W. J., Hua, C. H., Chang, W. C., Chiu, C. F., & Lin, C. C. (2022). Rituximab in combination with gemcitabine plus cisplatin in patients with recurrent and metastatic head and neck squamous cell carcinoma: a phase I trial. BMC Cancer, 22, 169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou, A. L., Wang, X., Yu, W., Yang, L., Wei, F., Sun, Q., Wang, Y., Kou, F., Dong, R., Ren, X., & Zhang, X. (2020). Expression level of PD-L1 is involved in ALDH1A1-mediated poor prognosis in patients with head and neck squamous cell carcinoma. Pathology, Research and Practice, 216, 153093.

    Article  CAS  PubMed  Google Scholar 

  14. Yu, D., Liu, X., Han, G., Liu, Y., Zhao, X., Wang, D., Bian, X., Gu, T., & Wen, L. (2019). The let-7 family of microRNAs suppresses immune evasion in head and neck squamous cell carcinoma by promoting PD-L1 degradation. Cell Communication and Signaling: CCS, 17, 173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yin, G., Guo, W., Duan, H., & Huang, Z. (2021). Role of PD‐1/PD‐L1 inhibitors in the treatment of recurrent/metastatic head and neck squamous cell carcinoma: A systematic review and meta‐analysis. Clinical Otolaryngology, 46, 1013–1020.

    Article  PubMed  Google Scholar 

  16. Shen, B., Huang, D., Ramsey, A. J., Ig-Izevbekhai, K., Zhang, K., Lajud, S. A., O’Malley, B. W., & Li, D. (2020). PD-L1 and MRN synergy in platinum-based chemoresistance of head and neck squamous cell carcinoma. British Journal of Cancer, 122, 640–647.

    Article  CAS  PubMed  Google Scholar 

  17. Li, J., Yu, T., Yan, M., Zhang, X., Liao, L., Zhu, M., Lin, H., Pan, H., & Yao, M. (2019). DCUN1D1 facilitates tumor metastasis by activating FAK signaling and up-regulates PD-L1 in non-small-cell lung cancer. Experimental Cell Research, 374, 304–314.

    Article  CAS  PubMed  Google Scholar 

  18. De, S., Holvey-Bates, E. G., Mahen, K., Willard, B., & Stark, G. R. (2021). The ubiquitin E3 ligase FBXO22 degrades PD-L1 and sensitizes cancer cells to DNA damage. Proceedings of the National Academy of Sciences, 118(47), e2112674118.

    Article  Google Scholar 

  19. Ho, S. R., Lee, Y. C., Ittmann, M. M., Lin, F. T., Chan, K. S., & Lin, W. C. (2021). RNF144A deficiency promotes PD-L1 protein stabilization and carcinogen-induced bladder tumorigenesis. Cancer Letters, 520, 344–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Giannini, A. L., Gao, Y., & Bijlmakers, M. J. (2008). T-cell regulator RNF125/TRAC-1 belongs to a novel family of ubiquitin ligases with zinc fingers and a ubiquitin-binding domain. The Biochemical Journal, 410, 101–111.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, H., Li, C. C., Pardo, J., Chu, P. C., Liao, C. X., Huang, J., Dong, J. G., Zhou, X., Huang, Q., Huang, B., Bennett, M. K., Molineaux, S. M., Lu, H., Daniel-Issakani, S., Payan, D. G., & Masuda, E. S. (2005). A novel E3 ubiquitin ligase TRAC-1 positively regulates T cell activation. The Journal of Immunology, 174, 5288–5297.

    Article  CAS  PubMed  Google Scholar 

  22. Tang, J., Tu, S., Lin, G., Guo, H., Yan, C., Liu, Q., Huang, L., Tang, N., Xiao, Y., Pope, R. M., Rajaram, M. V. S., Amer, A. O., Ahmer, B. M., Gunn, J. S., Wozniak, D. J., Tao, L., Coppola, V., Zhang, L., Langdon, W. Y., et al. (2020). Sequential ubiquitination of NLRP3 by RNF125 and Cbl-b limits inflammasome activation and endotoxemia. Journal of Experimental Medicine, 217(4).

  23. Kim, H., Frederick, D. T., Levesque, M. P., Cooper, Z. A., Feng, Y., Krepler, C., Brill, L., Samuels, Y., Hayward, N. K., Perlina, A., Piris, A., Zhang, T., Halaban, R., Herlyn, M. M., Brown, K. M., Wargo, J. A., Dummer, R., Flaherty, K. T., & Ronai, Z. A. (2015). Downregulation of the ubiquitin ligase RNF125 underlies resistance of melanoma cells to BRAF inhibitors via JAK1 deregulation. Cell Reports, 11, 1458–1473.

    Article  CAS  PubMed  Google Scholar 

  24. Li, T., Qin, Y., Zhen, Z., Shen, H., Cong, T., Schiferle, E., & Xiao, S. (2019). Long non‐coding RNA HOTAIR/microRNA‐206 sponge regulates STC2 and further influences cell biological functions in head and neck squamous cell carcinoma. Cell Proliferation, 52, e12651.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kang, S. H., Keam, B., Ahn, Y. O., Park, H. R., Kim, M., Kim, T. M., Kim, D. W., & Heo, D. S. (2019). Inhibition of MEK with trametinib enhances the efficacy of anti-PD-L1 inhibitor by regulating anti-tumor immunity in head and neck squamous cell carcinoma. Oncoimmunology, 8, e1515057.

    Article  PubMed  Google Scholar 

  26. Luo, Y., Hao, T., Zhang, J., Zhang, M., Sun, P., & Wu, L. (2019). MicroRNA-592 suppresses the malignant phenotypes of thyroid cancer by regulating lncRNA NEAT1 and downregulating NOVA1. International Journal of Molecular Medicine, 44, 1172–1182.

    CAS  PubMed  Google Scholar 

  27. Li, P., Luo, X., Xie, Y., Li, P., Hu, F., Chu, J., Chen, X., Song, W., Wang, A., Tian, G., & Gu, X. (2020). GC-derived EVs enriched with microRNA-675-3p contribute to the MAPK/PD-L1-mediated tumor immune escape by targeting CXXC4. Molecular Therapy-Nucleic Acids, 22, 615–626.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tian, P., Wei, J. X., Li, J., Ren, J. K., & Yang, J. J. (2021). LncRNA SNHG1 regulates immune escape of renal cell carcinoma by targeting miR‐129‐3p to activate STAT3 and PD‐L1. Cell Biology International, 45, 1546–1560.

    Article  CAS  PubMed  Google Scholar 

  29. Qian, M., Ling, W., & Ruan, Z. (2020). Long non-coding RNA SNHG12 promotes immune escape of ovarian cancer cells through their crosstalk with M2 macrophages. Aging, 12, 17122–17136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yuan, L., Ye, J., & Fan, D. (2020). The B7-H4 gene induces immune escape partly via upregulating the PD-1/Stat3 pathway in non-small cell lung cancer. Human Immunology, 81, 254–261.

    Article  CAS  PubMed  Google Scholar 

  31. Zhu, Y., Zhang, C., Huang, M., Lin, J., Fan, X., & Ni, T. (2021). TRIM26 induces ferroptosis to inhibit hepatic stellate cell activation and mitigate liver fibrosis through mediating SLC7A11 ubiquitination. Front Cell Dev Biol, 9, 644901.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu, S., Yang, N., Wang, L., Wei, B., Chen, J., & Gao, Y. (2020). lncRNA SNHG11 promotes lung cancer cell proliferation and migration via activation of Wnt/β‐catenin signaling pathway. Journal of Cellular Physiology, 235, 7541–7553.

    Article  CAS  PubMed  Google Scholar 

  33. Sharp, M. F., Bythell-Douglas, R., Deans, A. J., & Crismani, W. (2021). The Fanconi anemia ubiquitin E3 ligase complex as an anti-cancer target. Molecular Cell, 81, 2278–2289.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang, X., Wang, J., Deng, X., Xiong, F., Ge, J., Xiang, B., Wu, X., Ma, J., Zhou, M., Li, X., Li, Y., Li, G., Xiong, W., Guo, C., & Zeng, Z. (2019). Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Molecular Cancer, 18, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Qian, J., Wang, C., Wang, B., Yang, J., Wang, Y., Luo, F., Xu, J., Zhao, C., Liu, R., & Chu, Y. (2018). The IFN-γ/PD-L1 axis between T cells and tumor microenvironment: hints for glioma anti-PD-1/PD-L1 therapy. Journal of Neuroinflammation, 15, 290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cousin, N., Cap, S., Dihr, M., Tacconi, C., Detmar, M., & Dieterich, L. C. (2021). Lymphatic PD-L1 expression restricts tumor-specific CD8+ T-cell responses. Cancer Research, 81, 4133–4144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Clin, B., Gramond, C., Thaon, I., Brochard, P., Delva, F., Chammings, S., Gislard, A., Laurent, F., Paris, C., Lacourt, A., & Pairon, J. C. (2022). Head and neck cancer and asbestos exposure. Occupational and Environmental Medicine, 79, 690–696.

    Article  PubMed  Google Scholar 

  38. Wang, G., Zhang, M., Cheng, M., Wang, X., Li, K., Chen, J., Chen, Z., Chen, S., Chen, J., Xiong, G., Xu, X., Wang, C., & Chen, D. (2021). Tumor microenvironment in head and neck squamous cell carcinoma: Functions and regulatory mechanisms. Cancer Letters, 507, 55–69.

    Article  CAS  PubMed  Google Scholar 

  39. Li, H., Yang, Z., Yang, X., Zhang, F., Wang, J., Wu, Z., Wanyan, C., Meng, Q., Gao, W., Yang, X., & Wei, J. (2022). LINC01123 promotes immune escape by sponging miR-214-3p to regulate B7–H3 in head and neck squamous-cell carcinoma. Cell Death & Disease, 13, 109.

    Article  CAS  Google Scholar 

  40. Seliger, B., Massa, C., Yang, B., Bethmann, D., Kappler, M., Eckert, A. W., & Wickenhauser, C. (2020). Immune escape mechanisms and their clinical relevance in head and neck squamous cell carcinoma. International Journal of Molecular Sciences, 21(19), 7032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fujita, Y., Tinoco, R., Li, Y., Senft, D., & Ronai, Z. A. (2019). Ubiquitin ligases in cancer immunotherapy–balancing antitumor and autoimmunity. Trends in Molecular Medicine, 25, 428–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang, L., Zhou, B., Li, X., Lu, Z., Li, W., Huo, X., & Miao, Z. (2015). RNF125 is a ubiquitin-protein ligase that promotes p53 degradation. Cellular Physiology and Biochemistry, 35, 237–245.

    Article  CAS  PubMed  Google Scholar 

  43. Veigas, F., Mahmoud, Y. D., Merlo, J., Rinflerch, A., Rabinovich, G. A., & Girotti, M. R. (2021). Immune checkpoints pathways in head and neck squamous cell carcinoma. Cancers, 13(5), 1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gajewski, T. F., Schreiber, H., & Fu, Y. X. (2013). Innate and adaptive immune cells in the tumor microenvironment. Nature Immunology, 14, 1014–1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fu, C., & Jiang, A. (2018). Dendritic cells and CD8 T cell immunity in tumor microenvironment. Frontiers in Immunology, 9, 3059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yao, L., Xu, L., Zhou, L., Wu, S., Zou, W., Chen, M., Chen, J., & Peng, H. (2021). Toxoplasma gondii Type-I ROP18 targeting human E3 ligase TRIM21 for immune escape. Frontiers in Cell and Developmental Biology, 9, 685913.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Li, K., Zheng, X., Tang, H., Zang, Y. S., Zeng, C., Liu, X., Shen, Y., Pang, Y., Wang, S., Xie, F., Lu, X., Luo, Y., Li, Z., Bi, W., Jia, X., Huang, T., Wei, R., Huang, K., Chen, Z., et al. (2021). E3 ligase MKRN3 is a tumor suppressor regulating PABPC1 ubiquitination in non–small cell lung cancer. Journal of Experimental Medicine, 218(8), e20210151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, D., Wang, Y., Lu, R., Jiang, X., Chen, X., Meng, N., & Yan, G. R. (2020). E3 ligase ZFP91 inhibits Hepatocellular Carcinoma Metabolism Reprogramming by regulating PKM splicing. Theranostics, 10(19), 8558.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Peng, R., Cao, J., Su, B. B., Bai, X. S., Jin, X., Wang, A. Q., Wang, Q., Liu, R. J., Jiang, G. Q., Jin, S. J., Zhang, C., & Bai, D. S. (2022). Down-regulation of circPTTG1IP induces hepatocellular carcinoma development via miR-16-5p/RNF125/JAK1 axis. Cancer Letters, 543, 215778.

    Article  CAS  PubMed  Google Scholar 

  50. Wang, Q., Cao, T., Zhang, X., Hui, J., Wang, C., Zhang, W., Wang, P., Zhou, Y., & Han, S. (2022). ATXN2-mediated PI3K/AKT activation confers gastric cancer chemoresistance and attenuates CD8+ T cell cytotoxicity. Journal of Immunology Research, 2022, 6863240.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cheng, T., Xu, M., Zhang, H., Lu, B., Zhang, X., Wang, Z., & Huang, J. (2022). KLHDC8A expression in association with macrophage infiltration and oxidative stress predicts unfavorable prognosis for glioma. Oxidative Medicine and Cellular Longevity, 2022, 2694377.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wu, Y., Zhang, C., Liu, X., He, Z., Shan, B., Zeng, Q., Zhao, Q., Zhu, H., Liao, H., Cen, X., Xu, X., Zhang, M., Hou, T., Wang, Z., Yan, H., Yang, S., Sun, Y., Chen, Y., Wu, R., et al. (2021). ARIH1 signaling promotes anti-tumor immunity by targeting PD-L1 for proteasomal degradation. Nature Communications, 12, 2346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gao, Y., Yang, J., Cai, Y., Fu, S., Zhang, N., Fu, X., & Li, L. (2018). IFN‐γ‐mediated inhibition of lung cancer correlates with PD‐L1 expression and is regulated by PI3K‐AKT signaling. International Journal of Cancer, 143, 931–943.

    Article  CAS  PubMed  Google Scholar 

  54. Liu, W., Liu, R., Yuan, R., & Wang, X. (2021). Regulates PD-L1 expression to enhance anti-tumor immunity in NSCLC via targeting STAT3. Molecular Biotechnology, 63, 1268–1279.

    Article  CAS  PubMed  Google Scholar 

  55. Gou, Q., Dong, C., Xu, H., Khan, B., Jin, J., Liu, Q., Shi, J., & Hou, Y. (2020). PD-L1 degradation pathway and immunotherapy for cancer. Cell Death & Disease, 11, 955.

    Article  CAS  Google Scholar 

  56. Kim, D. H., Kim, H., Choi, Y. J., Kim, S. Y., Lee, J. E., Sung, K. J., Sung, Y. H., Pack, C. G., Jung, M. K., Han, B., Kim, K., Kim, W. S., Nam, S. J., Choi, C. M., Yun, M., Lee, J. C., & Rho, J. K. (2019). Exosomal PD-L1 promotes tumor growth through immune escape in non-small cell lung cancer. Experimental & Molecular Medicine, 51, 1–13.

    Google Scholar 

  57. Eichberger, J., Schulz, D., Pscheidl, K., Fiedler, M., Reichert, T. E., Bauer, R. J., & Ettl, T. (2020). PD-L1 influences cell spreading, migration and invasion in head and neck cancer cells. International Journal of Molecular Sciences, 21(21), 8089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou, B., Yan, J., Guo, L., Zhang, B., Liu, S., Yu, M., Chen, Z., Zhang, K., Zhang, W., Li, X., Xu, Y., Xiao, Y., Zhou, J., Fan, J., Hung, M. C., Li, H., & Ye, Q. (2020). Hepatoma cell-intrinsic TLR9 activation induces immune escape through PD-L1 upregulation in hepatocellular carcinoma. Theranostics, 10, 6530–6543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, S., Yao, F., Lu, X., Li, Q., Su, Z., Lee, J. H., Wang, C., & Du, L. (2019). Temozolomide promotes immune escape of GBM cells via upregulating PD-L1. American Journal of Cancer Research, 9, 1161–1171.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The funding body did not participate in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

CHJ is guarantor of integrity of the entire study and responsible for study concepts, manuscript review; LLH is responsible for study design, definition of intellectual content, data analysis, manuscript preparation; SX is responsible for literature research, experimental studies; WQW is responsible for clinical studies, manuscript editing; QZ is responsible for data acquisition; FL is responsible for statistical analysis; All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cuihong Jiang.

Ethics declarations

Competing interests

All authors declare that there is no conflict of interests in this study.

Ethical Approval and Consent to Participate

The animal-associated experimental procedures were ratified by the ethics committee for animal welfare at Hunan Cancer Hospital (Approval number: 2022-085). Significant efforts were contributed to the reduction of animal number and suffering. The animal experiments have been carried out in accordance with the ARRIVE guidelines.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., He, L., Xiao, S. et al. E3 Ubiquitin Ligase RNF125 Suppresses Immune Escape in Head and Neck Squamous Cell Carcinoma by Regulating PD-L1 Expression. Mol Biotechnol 65, 891–903 (2023). https://doi.org/10.1007/s12033-022-00587-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00587-w

Keywords

Navigation